Goto

Collaborating Authors

 Clarke, Alexander Kenneth


Learning Cortico-Muscular Dependence through Orthonormal Decomposition of Density Ratios

arXiv.org Artificial Intelligence

The cortico-spinal neural pathway is fundamental for motor control and movement execution, and in humans it is typically studied using concurrent electroencephalography (EEG) and electromyography (EMG) recordings. However, current approaches for capturing high-level and contextual connectivity between these recordings have important limitations. Here, we present a novel application of statistical dependence estimators based on orthonormal decomposition of density ratios to model the relationship between cortical and muscle oscillations. Our method extends from traditional scalar-valued measures by learning eigenvalues, eigenfunctions, and projection spaces of density ratios from realizations of the signal, addressing the interpretability, scalability, and local temporal dependence of cortico-muscular connectivity. We experimentally demonstrate that eigenfunctions learned from cortico-muscular connectivity can accurately classify movements and subjects. Moreover, they reveal channel and temporal dependencies that confirm the activation of specific EEG channels during movement. Our code is available at https://github.com/bohu615/corticomuscular-eigen-encoder.


Conditional Generative Models for Simulation of EMG During Naturalistic Movements

arXiv.org Artificial Intelligence

Numerical models of electromyographic (EMG) signals have provided a huge contribution to our fundamental understanding of human neurophysiology and remain a central pillar of motor neuroscience and the development of human-machine interfaces. However, whilst modern biophysical simulations based on finite element methods are highly accurate, they are extremely computationally expensive and thus are generally limited to modelling static systems such as isometrically contracting limbs. As a solution to this problem, we propose a transfer learning approach, in which a conditional generative model is trained to mimic the output of an advanced numerical model. To this end, we present BioMime, a conditional generative neural network trained adversarially to generate motor unit activation potential waveforms under a wide variety of volume conductor parameters. We demonstrate the ability of such a model to predictively interpolate between a much smaller number of numerical model's outputs with a high accuracy. Consequently, the computational load is dramatically reduced, which allows the rapid simulation of EMG signals during truly dynamic and naturalistic movements.