Goto

Collaborating Authors

 Chunhua Shen


Multi-marginal Wasserstein GAN

Neural Information Processing Systems

Multiple marginal matching problem aims at learning mappings to match a source domain to multiple target domains and it has attracted great attention in many applications, such as multi-domain image translation. However, addressing this problem has two critical challenges: (i) Measuring the multi-marginal distance among different domains is very intractable; (ii) It is very difficult to exploit cross-domain correlations to match the target domain distributions. In this paper, we propose a novel Multi-marginal Wasserstein GAN (MWGAN) to minimize Wasserstein distance among domains. Specifically, with the help of multi-marginal optimal transport theory, we develop a new adversarial objective function with innerand inter-domain constraints to exploit cross-domain correlations. Moreover, we theoretically analyze the generalization performance of MWGAN, and empirically evaluate it on the balanced and imbalanced translation tasks. Extensive experiments on toy and real-world datasets demonstrate the effectiveness of MWGAN.




Multi-marginal Wasserstein GAN

Neural Information Processing Systems

Multiple marginal matching problem aims at learning mappings to match a source domain to multiple target domains and it has attracted great attention in many applications, such as multi-domain image translation. However, addressing this problem has two critical challenges: (i) Measuring the multi-marginal distance among different domains is very intractable; (ii) It is very difficult to exploit cross-domain correlations to match the target domain distributions. In this paper, we propose a novel Multi-marginal Wasserstein GAN (MWGAN) to minimize Wasserstein distance among domains. Specifically, with the help of multi-marginal optimal transport theory, we develop a new adversarial objective function with innerand inter-domain constraints to exploit cross-domain correlations. Moreover, we theoretically analyze the generalization performance of MWGAN, and empirically evaluate it on the balanced and imbalanced translation tasks. Extensive experiments on toy and real-world datasets demonstrate the effectiveness of MWGAN.


Unsupervised Scale-consistent Depth and Ego-motion Learning from Monocular Video

Neural Information Processing Systems

Recent work has shown that CNN-based depth and ego-motion estimators can be learned using unlabelled monocular videos. However, the performance is limited by unidentified moving objects that violate the underlying static scene assumption in geometric image reconstruction. More significantly, due to lack of proper constraints, networks output scale-inconsistent results over different samples, i.e., the ego-motion network cannot provide full camera trajectories over a long video sequence because of the per-frame scale ambiguity. This paper tackles these challenges by proposing a geometry consistency loss for scale-consistent predictions and an induced self-discovered mask for handling moving objects and occlusions. Since we do not leverage multi-task learning like recent works, our framework is much simpler and more efficient. Comprehensive evaluation results demonstrate that our depth estimator achieves the state-of-the-art performance on the KITTI dataset. Moreover, we show that our ego-motion network is able to predict a globally scale-consistent camera trajectory for long video sequences, and the resulting visual odometry accuracy is competitive with the recent model that is trained using stereo videos. To the best of our knowledge, this is the first work to show that deep networks trained using unlabelled monocular videos can predict globally scale-consistent camera trajectories over a long video sequence.


Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections

Neural Information Processing Systems

In this paper, we propose a very deep fully convolutional encoding-decoding framework for image restoration such as denoising and super-resolution. The network is composed of multiple layers of convolution and deconvolution operators, learning end-to-end mappings from corrupted images to the original ones. The convolutional layers act as the feature extractor, which capture the abstraction of image contents while eliminating noises/corruptions. Deconvolutional layers are then used to recover the image details. We propose to symmetrically link convolutional and deconvolutional layers with skip-layer connections, with which the training converges much faster and attains a higher-quality local optimum. First, the skip connections allow the signal to be back-propagated to bottom layers directly, and thus tackles the problem of gradient vanishing, making training deep networks easier and achieving restoration performance gains consequently. Second, these skip connections pass image details from convolutional layers to deconvolutional layers, which is beneficial in recovering the original image. Significantly, with the large capacity, we can handle different levels of noises using a single model. Experimental results show that our network achieves better performance than recent state-of-the-art methods.