Goto

Collaborating Authors

 Chowdhury, Samir


Generalized Spectral Clustering via Gromov-Wasserstein Learning

arXiv.org Machine Learning

We establish a bridge between spectral clustering and Gromov-Wasserstein Learning (GWL), a recent optimal transport-based approach to graph partitioning. This connection both explains and improves upon the state-of-the-art performance of GWL. The Gromov-Wasserstein framework provides probabilistic correspondences between nodes of source and target graphs via a quadratic programming relaxation of the node matching problem. Our results utilize and connect the observations that the GW geometric structure remains valid for any rank-2 tensor, in particular the adjacency, distance, and various kernel matrices on graphs, and that the heat kernel outperforms the adjacency matrix in producing stable and informative node correspondences. Using the heat kernel in the GWL framework provides new multiscale graph comparisons without compromising theoretical guarantees, while immediately yielding improved empirical results. A key insight of the GWL framework toward graph partitioning was to compute GW correspondences from a source graph to a template graph with isolated, self-connected nodes. We show that when comparing against a two-node template graph using the heat kernel at the infinite time limit, the resulting partition agrees with the partition produced by the Fiedler vector. This in turn yields a new insight into the $k$-cut graph partitioning problem through the lens of optimal transport. Our experiments on a range of real-world networks achieve comparable results to, and in many cases outperform, the state-of-the-art achieved by GWL.


Path homologies of deep feedforward networks

arXiv.org Machine Learning

We provide a characterization of two types of directed homology for fully-connected, feedforward neural network architectures. These exact characterizations of the directed homology structure of a neural network architecture are the first of their kind. We show that the directed flag homology of deep networks reduces to computing the simplicial homology of the underlying undirected graph, which is explicitly given by Euler characteristic computations. We also show that the path homology of these networks is non-trivial in higher dimensions and depends on the number and size of the layers within the network. These results provide a foundation for investigating homological differences between neural network architectures and their realized structure as implied by their parameters.


Improved Error Bounds for Tree Representations of Metric Spaces

Neural Information Processing Systems

Estimating optimal phylogenetic trees or hierarchical clustering trees from metric data is an important problem in evolutionary biology and data analysis. Intuitively, the goodness-of-fit of a metric space to a tree depends on its inherent treeness, as well as other metric properties such as intrinsic dimension. Existing algorithms for embedding metric spaces into tree metrics provide distortion bounds depending on cardinality. Because cardinality is a simple property of any set, we argue that such bounds do not fully capture the rich structure endowed by the metric. We consider an embedding of a metric space into a tree proposed by Gromov. By proving a stability result, we obtain an improved additive distortion bound depending only on the hyperbolicity and doubling dimension of the metric. We observe that Gromov's method is dual to the well-known single linkage hierarchical clustering (SLHC) method. By means of this duality, we are able to transport our results to the setting of SLHC, where such additive distortion bounds were previously unknown.