Goto

Collaborating Authors

 Choudhury, Tanzeem


Exploring Personalized Health Support through Data-Driven, Theory-Guided LLMs: A Case Study in Sleep Health

arXiv.org Artificial Intelligence

Despite the prevalence of sleep-tracking devices, many individuals struggle to translate data into actionable improvements in sleep health. Current methods often provide data-driven suggestions but may not be feasible and adaptive to real-life constraints and individual contexts. We present HealthGuru, a novel large language model-powered chatbot to enhance sleep health through data-driven, theory-guided, and adaptive recommendations with conversational behavior change support. HealthGuru's multi-agent framework integrates wearable device data, contextual information, and a contextual multi-armed bandit model to suggest tailored sleep-enhancing activities. The system facilitates natural conversations while incorporating data-driven insights and theoretical behavior change techniques. Our eight-week in-the-wild deployment study with 16 participants compared HealthGuru to a baseline chatbot. Results show improved metrics like sleep duration and activity scores, higher quality responses, and increased user motivation for behavior change with HealthGuru. We also identify challenges and design considerations for personalization and user engagement in health chatbots.


Towards Population Scale Activity Recognition: A Framework for Handling Data Diversity

AAAI Conferences

The rising popularity of the sensor-equipped smartphone is changing the possible scale and scope of human activity inference. The diversity in user population seen in large user bases can overwhelm conventional one-size-fits-all classi๏ฌcation approaches. Although personalized models are better able to handle population diversity, they often require increased effort from the end user during training and are computationally expensive. In this paper, we propose an activity classification framework that is scalable and can tractably handle an increasing number of users. Scalability is achieved by maintaining distinct groups of similar users during the training process, which makes it possible to account for the differences between users without resorting to training individualized classifiers. The proposed framework keeps user burden low by leveraging crowd-sourced data labels, where simple natural language processing techniques in combination with multi-instance learning are used to handle labeling errors introduced by low-commitment everyday users. Experiment results on a large public dataset demonstrate that the framework can cope with population diversity irrespective of population size.


Discovering Long Range Properties of Social Networks with Multi-Valued Time-Inhomogeneous Models

AAAI Conferences

The current methods used to mine and analyze temporal social network data make two assumptions: all edges have the same strength, and all parameters are time-homogeneous. We show that those assumptions may not hold for social networks and propose an alternative model with two novel aspects: (1) the modeling of edges as multi-valued variables that can change in intensity, and (2) the use of a curved exponential family framework to capture time-inhomogeneous properties while retaining a parsimonious and interpretable model. We show that our model outperforms traditional models on two real-world social network data sets.


Community-Guided Learning: Exploiting Mobile Sensor Users to Model Human Behavior

AAAI Conferences

Modeling human behavior requires vast quantities of accurately labeled training data, but for ubiquitous people-aware applications such data is rarely attainable. Even researchers make mistakes when labeling data, and consistent, reliable labels from low-commitment users are rare. In particular, users may give identical labels to activities with characteristically different signatures (e.g., labeling eating at home or at a restaurant as "dinner") or may give different labels to the same context (e.g., "work" vs. "office"). In this scenario, labels are unreliable but nonetheless contain valuable information for classification. To facilitate learning in such unconstrained labeling scenarios, we propose Community-Guided Learning (CGL), a framework that allows existing classifiers to learn robustly from unreliably-labeled user-submitted data. CGL exploits the underlying structure in the data and the unconstrained labels to intelligently group crowd-sourced data. We demonstrate how to use similarity measures to determine when and how to split and merge contributions from different labeled categories and present experimental results that demonstrate the effectiveness of our framework.


Fast and Scalable Training of Semi-Supervised CRFs with Application to Activity Recognition

Neural Information Processing Systems

We present a new and efficient semi-supervised training method for parameter estimation and feature selection in conditional random fields (CRFs). In real-world applications such as activity recognition, unlabeled sensor traces are relatively easy to obtain whereas labeled examples are expensive and tedious to collect. Furthermore, the ability to automatically select a small subset of discriminatory features from a large pool can be advantageous in terms of computational speed as well as accuracy. In this paper, we introduce the semi-supervised virtual evidence boosting (sVEB) algorithm for training CRFs -- a semi-supervised extension to the recently developed virtual evidence boosting (VEB) method for feature selection and parameter learning. Semi-supervised VEB takes advantage of the unlabeled data via minimum entropy regularization -- the objective function combines the unlabeled conditional entropy with labeled conditional pseudo-likelihood. The sVEB algorithm reduces the overall system cost as well as the human labeling cost required during training, which are both important considerations in building real world inference systems. In a set of experiments on synthetic data and real activity traces collected from wearable sensors, we illustrate that our algorithm benefits from both the use of unlabeled data and automatic feature selection, and outperforms other semi-supervised training approaches.


Modeling Conversational Dynamics as a Mixed-Memory Markov Process

Neural Information Processing Systems

In this work, we quantitatively investigate the ways in which a given person influences the joint turn-taking behavior in a conversation. After collecting an auditory database of social interactions among a group of twenty-three people via wearable sensors (66 hours of data each over two weeks), we apply speech and conversation detection methods to the auditory streams. These methods automatically locate the conversations, determine their participants, and mark which participant was speaking when. We then model the joint turn-taking behavior as a Mixed-Memory Markov Model [1] that combines the statistics of the individual subjects' self-transitions and the partners' cross-transitions. The mixture parameters in this model describe how much each person's individual behavior contributes to the joint turn-taking behavior of the pair.


Modeling Conversational Dynamics as a Mixed-Memory Markov Process

Neural Information Processing Systems

There is a long history of work in the social sciences aimed at understanding the interactions between individuals and the influences they have on each others' behavior. However, existing studies of social network interactions have either been restricted to online communities, where unambiguous measurements about how people interact can be obtained, or have been forced to rely on questionnaires or diaries to get data on face-to-face interactions. Survey-based methods are error prone and impractical to scale up. Studies show that self-reports correspond poorly to communication behavior as recorded by independent observers [3]. In contrast, we have used wearable sensors and recent advances in speech processing techniques to automatically gather information about conversations: when they occurred, who was involved, and who was speaking when.