Goto

Collaborating Authors

 Choudhury, Sanjiban


Efficient Imitation Under Misspecification

arXiv.org Artificial Intelligence

Interactive imitation learning (IL) is a powerful paradigm for learning to make sequences of decisions from an expert demonstrating how to perform a task. Prior work in efficient imitation learning has focused on the realizable setting, where the expert's policy lies within the learner's policy class (i.e. the learner can perfectly imitate the expert in all states). However, in practice, perfect imitation of the expert is often impossible due to differences in state information and action space expressiveness (e.g. morphological differences between robots and humans.) In this paper, we consider the more general misspecified setting, where no assumptions are made about the expert policy's realizability. We introduce a novel structural condition, reward-agnostic policy completeness, and prove that it is sufficient for interactive IL algorithms to efficiently avoid the quadratically compounding errors that stymie offline approaches like behavioral cloning. We address an additional practical constraint-the case of limited expert data-and propose a principled method for using additional offline data to further improve the sample-efficiency of interactive IL algorithms. Finally, we empirically investigate the optimal reset distribution in efficient IL under misspecification with a suite of continuous control tasks.


All Roads Lead to Likelihood: The Value of Reinforcement Learning in Fine-Tuning

arXiv.org Artificial Intelligence

From a first-principles perspective, it may seem odd that the strongest results in foundation model fine-tuning (FT) are achieved via a relatively complex, two-stage training procedure. Specifically, one first trains a reward model (RM) on some dataset (e.g. human preferences) before using it to provide online feedback as part of a downstream reinforcement learning (RL) procedure, rather than directly optimizing the policy parameters on the dataset via offline maximum likelihood estimation. In fact, from an information-theoretic perspective, we can only lose information via passing through a reward model and cannot create any new information via on-policy sampling. To explain this discrepancy, we scrutinize several hypotheses on the value of RL in FT through both theoretical and empirical lenses. Of the hypotheses considered, we find the most support for the explanation that on problems with a generation-verification gap, the combination of the ease of learning the relatively simple RM (verifier) from the preference data, coupled with the ability of the downstream RL procedure to then filter its search space to the subset of policies (generators) that are optimal for relatively simple verifiers is what leads to the superior performance of online FT.


Multi-Turn Code Generation Through Single-Step Rewards

arXiv.org Artificial Intelligence

We address the problem of code generation from multi-turn execution feedback. Existing methods either generate code without feedback or use complex, hierarchical reinforcement learning to optimize multi-turn rewards. We propose a simple yet scalable approach, $\mu$Code, that solves multi-turn code generation using only single-step rewards. Our key insight is that code generation is a one-step recoverable MDP, where the correct code can be recovered from any intermediate code state in a single turn. $\mu$Code iteratively trains both a generator to provide code solutions conditioned on multi-turn execution feedback and a verifier to score the newly generated code. Experimental evaluations show that our approach achieves significant improvements over the state-of-the-art baselines. We provide analysis of the design choices of the reward models and policy, and show the efficacy of $\mu$Code at utilizing the execution feedback. Our code is available at https://github.com/portal-cornell/muCode.


Process Reward Models for LLM Agents: Practical Framework and Directions

arXiv.org Artificial Intelligence

We introduce Agent Process Reward Models (AgentPRM), a simple and scalable framework for training LLM agents to continually improve through interactions. AgentPRM follows a lightweight actor-critic paradigm, using Monte Carlo rollouts to compute reward targets and optimize policies. It requires minimal modifications to existing RLHF pipelines, making it easy to integrate at scale. Beyond AgentPRM, we propose InversePRM, which learns process rewards directly from demonstrations without explicit outcome supervision. We also explore key challenges and opportunities, including exploration, process reward shaping, and model-predictive reasoning. We evaluate on ALFWorld benchmark, show that small 3B models trained with AgentPRM and InversePRM outperform strong GPT-4o baselines, and analyze test-time scaling, reward hacking, and more.


Imitation Learning from a Single Temporally Misaligned Video

arXiv.org Artificial Intelligence

We examine the problem of learning sequential tasks from a single visual demonstration. A key challenge arises when demonstrations are temporally misaligned due to variations in timing, differences in embodiment, or inconsistencies in execution. Existing approaches treat imitation as a distribution-matching problem, aligning individual frames between the agent and the demonstration. However, we show that such frame-level matching fails to enforce temporal ordering or ensure consistent progress. Our key insight is that matching should instead be defined at the level of sequences. We propose that perfect matching occurs when one sequence successfully covers all the subgoals in the same order as the other sequence. We present ORCA (ORdered Coverage Alignment), a dense per-timestep reward function that measures the probability of the agent covering demonstration frames in the correct order. On temporally misaligned demonstrations, we show that agents trained with the ORCA reward achieve $4.5$x improvement ($0.11 \rightarrow 0.50$ average normalized returns) for Meta-world tasks and $6.6$x improvement ($6.55 \rightarrow 43.3$ average returns) for Humanoid-v4 tasks compared to the best frame-level matching algorithms. We also provide empirical analysis showing that ORCA is robust to varying levels of temporal misalignment. Our code is available at https://github.com/portal-cornell/orca/


Robotouille: An Asynchronous Planning Benchmark for LLM Agents

arXiv.org Artificial Intelligence

Effective asynchronous planning, or the ability to efficiently reason and plan over states and actions that must happen in parallel or sequentially, is essential for agents that must account for time delays, reason over diverse long-horizon tasks, and collaborate with other agents. While large language model (LLM) agents show promise in high-level task planning, current benchmarks focus primarily on short-horizon tasks and do not evaluate such asynchronous planning capabilities. We introduce Robotouille, a challenging benchmark environment designed to test LLM agents' ability to handle long-horizon asynchronous scenarios. Our synchronous and asynchronous datasets capture increasingly complex planning challenges that go beyond existing benchmarks, requiring agents to manage overlapping tasks and interruptions. Our results show that ReAct (gpt4-o) achieves 47% on synchronous tasks but only 11% on asynchronous tasks, highlighting significant room for improvement. We further analyze failure modes, demonstrating the need for LLM agents to better incorporate long-horizon feedback and self-audit their reasoning during task execution. Code is available at https://github.com/portal-cornell/robotouille.


Motion Tracks: A Unified Representation for Human-Robot Transfer in Few-Shot Imitation Learning

arXiv.org Artificial Intelligence

Teaching robots to autonomously complete everyday tasks remains a challenge. Imitation Learning (IL) is a powerful approach that imbues robots with skills via demonstrations, but is limited by the labor-intensive process of collecting teleoperated robot data. Human videos offer a scalable alternative, but it remains difficult to directly train IL policies from them due to the lack of robot action labels. To address this, we propose to represent actions as short-horizon 2D trajectories on an image. These actions, or motion tracks, capture the predicted direction of motion for either human hands or robot end-effectors. We instantiate an IL policy called Motion Track Policy (MT-pi) which receives image observations and outputs motion tracks as actions. By leveraging this unified, cross-embodiment action space, MT-pi completes tasks with high success given just minutes of human video and limited additional robot demonstrations. At test time, we predict motion tracks from two camera views, recovering 6DoF trajectories via multi-view synthesis. MT-pi achieves an average success rate of 86.5% across 4 real-world tasks, outperforming state-of-the-art IL baselines which do not leverage human data or our action space by 40%, and generalizes to scenarios seen only in human videos. Code and videos are available on our website https://portal-cornell.github.io/motion_track_policy/.


Aligning LLMs with Domain Invariant Reward Models

arXiv.org Artificial Intelligence

Aligning large language models (LLMs) to human preferences is challenging in domains where preference data is unavailable. We address the problem of learning reward models for such target domains by leveraging feedback collected from simpler source domains, where human preferences are easier to obtain. Our key insight is that, while domains may differ significantly, human preferences convey \emph{domain-agnostic} concepts that can be effectively captured by a reward model. We propose \method, a framework that trains domain-invariant reward models by optimizing a dual loss: a domain loss that minimizes the divergence between source and target distribution, and a source loss that optimizes preferences on the source domain. We show \method is a general approach that we evaluate and analyze across 4 distinct settings: (1) Cross-lingual transfer (accuracy: $0.621 \rightarrow 0.661$), (2) Clean-to-noisy (accuracy: $0.671 \rightarrow 0.703$), (3) Few-shot-to-full transfer (accuracy: $0.845 \rightarrow 0.920$), and (4) Simple-to-complex tasks transfer (correlation: $0.508 \rightarrow 0.556$). Our code, models and data are available at \url{https://github.com/portal-cornell/dial}.


Query-Efficient Planning with Language Models

arXiv.org Artificial Intelligence

Planning in complex environments requires an agent to efficiently query a world model to find a feasible sequence of actions from start to goal. Recent work has shown that Large Language Models (LLMs), with their rich prior knowledge and reasoning capabilities, can potentially help with planning by searching over promising states and adapting to feedback from the world. In this paper, we propose and study two fundamentally competing frameworks that leverage LLMs for queryefficient planning. The first uses LLMs as a heuristic within a search-based planner to select promising nodes to expand and propose promising actions. The second uses LLMs as a generative planner to propose an entire sequence of actions from start to goal, query a world model, and adapt based on feedback. We show that while both approaches improve upon comparable baselines, using an LLM as a generative planner results in significantly fewer interactions. Our key finding is that the LLM as a planner can more rapidly adapt its planning strategies based on immediate feedback than LLM as a heuristic. We present evaluations and ablations on Robotouille and PDDL planning benchmarks and discuss connections to existing theory on query-efficient planning algorithms. Planning is the process of determining a sequence of feasible or optimal actions that guide an agent from an initial state to a desired goal state (LaValle, 2006). Planning assumes access to a world model, enabling the agent to simulate and evaluate potential actions without relying on trial-and-error in the real environment. However, in many domains, such as robot task and motion planning, querying the world model is the most computationally expensive step (Kaelbling & Lozano-Pérez, 2013; Garrett et al., 2021). For instance, each query involves running physics or geometric computations or even running a local optimizer. Large language models (LLMs), trained on Internet-scale data, offer multiple opportunities to enable query-efficient planning. Notably, LLMs come with key capabilities such as (1) powerful priors to identify promising states that make progress toward the goal (Ahn et al., 2022), (2) tractable posteriors by easily conditioning on feedback to adaptively choose actions (Lee et al., 2023), and (3) generating complex sequences of actions to plan to the goal (Janner et al., 2021). Recent works leverage one or more such capabilities to design LLM-based agents that solve various decisionmaking tasks (Yao et al., 2022; Shinn et al., 2023b; Huang et al., 2022b; Zhao et al., 2023). However, we show that naively extending such LLM agents to the planning setting becomes quickly intractable. It must not only select among all possible state-action queries but condition on the history of all queries and observations.


Non-Adversarial Inverse Reinforcement Learning via Successor Feature Matching

arXiv.org Artificial Intelligence

In inverse reinforcement learning (IRL), an agent seeks to replicate expert demonstrations through interactions with the environment. Traditionally, IRL is treated as an adversarial game, where an adversary searches over reward models, and a learner optimizes the reward through repeated RL procedures. This game-solving approach is both computationally expensive and difficult to stabilize. In this work, we propose a novel approach to IRL by direct policy optimization: exploiting a linear factorization of the return as the inner product of successor features and a reward vector, we design an IRL algorithm by policy gradient descent on the gap between the learner and expert features. Our non-adversarial method does not require learning a reward function and can be solved seamlessly with existing actor-critic RL algorithms. Remarkably, our approach works in state-only settings without expert action labels, a setting which behavior cloning (BC) cannot solve. Empirical results demonstrate that our method learns from as few as a single expert demonstration and achieves improved performance on various control tasks.