Choromanska, Anna
A Survey of Optimization Methods for Training DL Models: Theoretical Perspective on Convergence and Generalization
Wang, Jing, Choromanska, Anna
As data sets grow in size and complexity, it is becoming more difficult to pull useful features from them using hand-crafted feature extractors. For this reason, deep learning (DL) frameworks are now widely popular. The Holy Grail of DL and one of the most mysterious challenges in all of modern ML is to develop a fundamental understanding of DL optimization and generalization. While numerous optimization techniques have been introduced in the literature to navigate the exploration of the highly non-convex DL optimization landscape, many survey papers reviewing them primarily focus on summarizing these methodologies, often overlooking the critical theoretical analyses of these methods. In this paper, we provide an extensive summary of the theoretical foundations of optimization methods in DL, including presenting various methodologies, their convergence analyses, and generalization abilities. This paper not only includes theoretical analysis of popular generic gradient-based first-order and second-order methods, but it also covers the analysis of the optimization techniques adapting to the properties of the DL loss landscape and explicitly encouraging the discovery of well-generalizing optimal points. Additionally, we extend our discussion to distributed optimization methods that facilitate parallel computations, including both centralized and decentralized approaches. We provide both convex and non-convex analysis for the optimization algorithms considered in this survey paper. Finally, this paper aims to serve as a comprehensive theoretical handbook on optimization methods for DL, offering insights and understanding to both novice and seasoned researchers in the field.
AD-L-JEPA: Self-Supervised Spatial World Models with Joint Embedding Predictive Architecture for Autonomous Driving with LiDAR Data
Zhu, Haoran, Dong, Zhenyuan, Topollai, Kristi, Choromanska, Anna
As opposed to human drivers, current autonomous driving systems still require vast amounts of labeled data to train. Recently, world models have been proposed to simultaneously enhance autonomous driving capabilities by improving the way these systems understand complex real-world environments and reduce their data demands via self-supervised pre-training. In this paper, we present AD-L-JEPA (aka Autonomous Driving with LiDAR data via a Joint Embedding Predictive Architecture), a novel self-supervised pre-training framework for autonomous driving with LiDAR data that, as opposed to existing methods, is neither generative nor contrastive. Our method learns spatial world models with a joint embedding predictive architecture. Instead of explicitly generating masked unknown regions, our self-supervised world models predict Bird's Eye View (BEV) embeddings to represent the diverse nature of autonomous driving scenes. Our approach furthermore eliminates the need to manually create positive and negative pairs, as is the case in contrastive learning. AD-L-JEPA leads to simpler implementation and enhanced learned representations. We qualitatively and quantitatively demonstrate high-quality of embeddings learned with AD-L-JEPA. We furthermore evaluate the accuracy and label efficiency of AD-L-JEPA on popular downstream tasks such as LiDAR 3D object detection and associated transfer learning. Our experimental evaluation demonstrates that AD-L-JEPA is a plausible approach for self-supervised pre-training in autonomous driving applications and is the best available approach outperforming SOTA, including most recently proposed Occupancy-MAE [1] and ALSO [2]. The source code of AD-L-JEPA is available at https://github.com/HaoranZhuExplorer/AD-L-JEPA-Release.
Adjacent Leader Decentralized Stochastic Gradient Descent
He, Haoze, Wang, Jing, Choromanska, Anna
This work focuses on the decentralized deep learning optimization framework. We propose Adjacent Leader Decentralized Gradient Descent (AL-DSGD), for improving final model performance, accelerating convergence, and reducing the communication overhead of decentralized deep learning optimizers. AL-DSGD relies on two main ideas. Firstly, to increase the influence of the strongest learners on the learning system it assigns weights to different neighbor workers according to both their performance and the degree when averaging among them, and it applies a corrective force on the workers dictated by both the currently best-performing neighbor and the neighbor with the maximal degree. Secondly, to alleviate the problem of the deterioration of the convergence speed and performance of the nodes with lower degrees, AL-DSGD relies on dynamic communication graphs, which effectively allows the workers to communicate with more nodes while keeping the degrees of the nodes low. Experiments demonstrate that AL-DSGD accelerates the convergence of the decentralized state-of-the-art techniques and improves their test performance especially in the communication constrained environments. We also theoretically prove the convergence of the proposed scheme. Finally, we release to the community a highly general and concise PyTorch-based library for distributed training of deep learning models that supports easy implementation of any distributed deep learning approach ((a)synchronous, (de)centralized).
GRAWA: Gradient-based Weighted Averaging for Distributed Training of Deep Learning Models
Dimlioglu, Tolga, Choromanska, Anna
We study distributed training of deep learning models in time-constrained environments. We propose a new algorithm that periodically pulls workers towards the center variable computed as a weighted average of workers, where the weights are inversely proportional to the gradient norms of the workers such that recovering the flat regions in the optimization landscape is prioritized. We develop two asynchronous variants of the proposed algorithm that we call Model-level and Layer-level Gradient-based Weighted Averaging (resp. MGRAWA and LGRAWA), which differ in terms of the weighting scheme that is either done with respect to the entire model or is applied layer-wise. On the theoretical front, we prove the convergence guarantee for the proposed approach in both convex and non-convex settings. We then experimentally demonstrate that our algorithms outperform the competitor methods by achieving faster convergence and recovering better quality and flatter local optima. We also carry out an ablation study to analyze the scalability of the proposed algorithms in more crowded distributed training environments. Finally, we report that our approach requires less frequent communication and fewer distributed updates compared to the state-of-the-art baselines.
ERASE-Net: Efficient Segmentation Networks for Automotive Radar Signals
Fang, Shihong, Zhu, Haoran, Bisla, Devansh, Choromanska, Anna, Ravindran, Satish, Ren, Dongyin, Wu, Ryan
Among various sensors for assisted and autonomous driving systems, automotive radar has been considered as a robust and low-cost solution even in adverse weather or lighting conditions. With the recent development of radar technologies and open-sourced annotated data sets, semantic segmentation with radar signals has become very promising. However, existing methods are either computationally expensive or discard significant amounts of valuable information from raw 3D radar signals by reducing them to 2D planes via averaging. In this work, we introduce ERASE-Net, an Efficient RAdar SEgmentation Network to segment the raw radar signals semantically. The core of our approach is the novel detect-then-segment method for raw radar signals. It first detects the center point of each object, then extracts a compact radar signal representation, and finally performs semantic segmentation. We show that our method can achieve superior performance on radar semantic segmentation task compared to the state-of-the-art (SOTA) technique. Furthermore, our approach requires up to 20x less computational resources. Finally, we show that the proposed ERASE-Net can be compressed by 40% without significant loss in performance, significantly more than the SOTA network, which makes it a more promising candidate for practical automotive applications.
A Theoretical-Empirical Approach to Estimating Sample Complexity of DNNs
Bisla, Devansh, Saridena, Apoorva Nandini, Choromanska, Anna
This paper focuses on understanding how the generalization error scales with the amount of the training data for deep neural networks (DNNs). Existing techniques in statistical learning require computation of capacity measures, such as VC dimension, to provably bound this error. It is however unclear how to extend these measures to DNNs and therefore the existing analyses are applicable to simple neural networks, which are not used in practice, e.g., linear or shallow ones or otherwise multi-layer perceptrons. Moreover, many theoretical error bounds are not empirically verifiable. We derive estimates of the generalization error that hold for deep networks and do not rely on unattainable capacity measures. The enabling technique in our approach hinges on two major assumptions: i) the network achieves zero training error, ii) the probability of making an error on a test point is proportional to the distance between this point and its nearest training point in the feature space and at a certain maximal distance (that we call radius) it saturates. Based on these assumptions we estimate the generalization error of DNNs. The obtained estimate scales as O(1/(\delta N^{1/d})), where N is the size of the training data and is parameterized by two quantities, the effective dimensionality of the data as perceived by the network (d) and the aforementioned radius (\delta), both of which we find empirically. We show that our estimates match with the experimentally obtained behavior of the error on multiple learning tasks using benchmark data-sets and realistic models. Estimating training data requirements is essential for deployment of safety critical applications such as autonomous driving etc. Furthermore, collecting and annotating training data requires a huge amount of financial, computational and human resources. Our empirical estimates will help to efficiently allocate resources.
Backdoor Attacks on the DNN Interpretation System
Fang, Shihong, Choromanska, Anna
Interpretability is crucial to understand the inner workings of deep neural networks (DNNs) and many interpretation methods generate saliency maps that highlight parts of the input image that contribute the most to the prediction made by the DNN. In this paper we design a backdoor attack that alters the saliency map produced by the network for an input image only with injected trigger that is invisible to the naked eye while maintaining the prediction accuracy. The attack relies on injecting poisoned data with a trigger into the training data set. The saliency maps are incorporated in the penalty term of the objective function that is used to train a deep model and its influence on model training is conditioned upon the presence of a trigger. We design two types of attacks: targeted attack that enforces a specific modification of the saliency map and untargeted attack when the importance scores of the top pixels from the original saliency map are significantly reduced. We perform empirical evaluation of the proposed backdoor attacks on gradient-based and gradient-free interpretation methods for a variety of deep learning architectures. We show that our attacks constitute a serious security threat when deploying deep learning models developed by untrusty sources. Finally, in the Supplement we demonstrate that the proposed methodology can be used in an inverted setting, where the correct saliency map can be obtained only in the presence of a trigger (key), effectively making the interpretation system available only to selected users.
Continual learning with direction-constrained optimization
Teng, Yunfei, Choromanska, Anna, Campbell, Murray
This paper studies a new design of the optimization algorithm for training deep learning models with a fixed architecture of the classification network in a continual learning framework, where the training data is non-stationary and the non-stationarity is imposed by a sequence of distinct tasks. This setting implies the existence of a manifold of network parameters that correspond to good performance of the network on all tasks. Our algorithm is derived from the geometrical properties of this manifold. We first analyze a deep model trained on only one learning task in isolation and identify a region in network parameter space, where the model performance is close to the recovered optimum. We provide empirical evidence that this region resembles a cone that expands along the convergence direction. We study the principal directions of the trajectory of the optimizer after convergence and show that traveling along a few top principal directions can quickly bring the parameters outside the cone but this is not the case for the remaining directions. We argue that catastrophic forgetting in a continual learning setting can be alleviated when the parameters are constrained to stay within the intersection of the plausible cones of individual tasks that were so far encountered during training. Enforcing this is equivalent to preventing the parameters from moving along the top principal directions of convergence corresponding to the past tasks. For each task we introduce a new linear autoencoder to approximate its corresponding top forbidden principal directions. They are then incorporated into the loss function in the form of a regularization term for the purpose of learning the coming tasks without forgetting. We empirically demonstrate that our algorithm performs favorably compared to other state-of-art regularization-based continual learning methods, including EWC and SI.
SGB: Stochastic Gradient Bound Method for Optimizing Partition Functions
Wang, Jing, Choromanska, Anna
This paper addresses the problem of optimizing partition functions in a stochastic learning setting. We propose a stochastic variant of the bound majorization algorithm from [29] that relies on upperbounding the partition function with a quadratic surrogate. The update of the proposed method, that we refer to as Stochastic Partition Function Bound (SPFB), resembles scaled stochastic gradient descent where the scaling factor relies on a second order term that is however different from the Hessian. Similarly to quasi-Newton schemes, this term is constructed using the stochastic approximation of the value of the function and its gradient. We prove sub-linear convergence rate of the proposed method and show the construction of its low-rank variant (LSPFB). Experiments on logistic regression demonstrate that the proposed schemes significantly outperform SGD. We also discuss how to use quadratic partition function bound for efficient training of deep learning models and in non-convex optimization.
Wasserstein Reinforcement Learning
Pacchiano, Aldo, Parker-Holder, Jack, Tang, Yunhao, Choromanska, Anna, Choromanski, Krzysztof, Jordan, Michael I.
We propose behavior-driven optimization via Wasserstein distances (WDs) to improve several classes of state-of-the-art reinforcement learning (RL) algorithms. We show that WD regularizers acting on appropriate policy embeddings efficiently incorporate behavioral characteristics into policy optimization. We demonstrate that they improve Evolution Strategy methods by encouraging more efficient exploration, can be applied in imitation learning and to speed up training of Trust Region Policy Optimization methods. Since the exact computation of WDs is expensive, we develop approximate algorithms based on the combination of different methods: dual formulation of the optimal transport problem, alternating optimization and random feature maps, to effectively replace exact WD computations in the RL tasks considered. We provide theoretical analysis of our algorithms and exhaustive empirical evaluation in a variety of RL settings.