Not enough data to create a plot.
Try a different view from the menu above.
Cho, Seunghyuk
CoPL: Collaborative Preference Learning for Personalizing LLMs
Choi, Youngbin, Cho, Seunghyuk, Lee, Minjong, Park, MoonJeong, Ko, Yesong, Ok, Jungseul, Kim, Dongwoo
Personalizing large language models (LLMs) is important for aligning outputs with diverse user preferences, yet existing methods struggle with flexibility and generalization. We propose CoPL (Collaborative Preference Learning), a graph-based collaborative filtering framework that models user-response relationships to enhance preference estimation, particularly in sparse annotation settings. By integrating a mixture of LoRA experts, CoPL efficiently fine-tunes LLMs while dynamically balancing shared and user-specific preferences. Additionally, an optimization-free adaptation strategy enables generalization to unseen users without fine-tuning. Experiments on UltraFeedback-P demonstrate that CoPL outperforms existing personalized reward models, effectively capturing both common and controversial preferences, making it a scalable solution for personalized LLM alignment.
GeoDANO: Geometric VLM with Domain Agnostic Vision Encoder
Cho, Seunghyuk, Qin, Zhenyue, Liu, Yang, Choi, Youngbin, Lee, Seungbeom, Kim, Dongwoo
We introduce GeoDANO, a geometric vision-language model (VLM) with a domain-agnostic vision encoder, for solving plane geometry problems. Although VLMs have been employed for solving geometry problems, their ability to recognize geometric features remains insufficiently analyzed. To address this gap, we propose a benchmark that evaluates the recognition of visual geometric features, including primitives such as dots and lines, and relations such as orthogonality. Our preliminary study shows that vision encoders often used in general-purpose VLMs, e.g., OpenCLIP, fail to detect these features and struggle to generalize across domains. We develop GeoCLIP, a CLIP based model trained on synthetic geometric diagram-caption pairs to overcome the limitation. Benchmark results show that GeoCLIP outperforms existing vision encoders in recognizing geometric features. We then propose our VLM, GeoDANO, which augments GeoCLIP with a domain adaptation strategy for unseen diagram styles. GeoDANO outperforms specialized methods for plane geometry problems and GPT-4o on MathVerse.
Hyperbolic VAE via Latent Gaussian Distributions
Cho, Seunghyuk, Lee, Juyong, Kim, Dongwoo
We propose a Gaussian manifold variational auto-encoder (GM-VAE) whose latent space consists of a set of Gaussian distributions. It is known that the set of the univariate Gaussian distributions with the Fisher information metric form a hyperbolic space, which we call a Gaussian manifold. To learn the VAE endowed with the Gaussian manifolds, we propose a pseudo-Gaussian manifold normal distribution based on the Kullback-Leibler divergence, a local approximation of the squared Fisher-Rao distance, to define a density over the latent space. In experiments, we demonstrate the efficacy of GM-VAE on two different tasks: density estimation of image datasets and environment modeling in model-based reinforcement learning. GM-VAE outperforms the other variants of hyperbolic- and Euclidean-VAEs on density estimation tasks and shows competitive performance in model-based reinforcement learning. We observe that our model provides strong numerical stability, addressing a common limitation reported in previous hyperbolic-VAEs.
Curve Your Attention: Mixed-Curvature Transformers for Graph Representation Learning
Cho, Sungjun, Cho, Seunghyuk, Park, Sungwoo, Lee, Hankook, Lee, Honglak, Lee, Moontae
Real-world graphs naturally exhibit hierarchical or cyclical structures that are unfit for the typical Euclidean space. While there exist graph neural networks that leverage hyperbolic or spherical spaces to learn representations that embed such structures more accurately, these methods are confined under the message-passing paradigm, making the models vulnerable against side-effects such as oversmoothing and oversquashing. More recent work have proposed global attention-based graph Transformers that can easily model long-range interactions, but their extensions towards non-Euclidean geometry are yet unexplored. To bridge this gap, we propose Fully Product-Stereographic Transformer, a generalization of Transformers towards operating entirely on the product of constant curvature spaces. When combined with tokenized graph Transformers, our model can learn the curvature appropriate for the input graph in an end-to-end fashion, without the need of additional tuning on different curvature initializations. We also provide a kernelized approach to non-Euclidean attention, which enables our model to run in time and memory cost linear to the number of nodes and edges while respecting the underlying geometry. Experiments on graph reconstruction and node classification demonstrate the benefits of generalizing Transformers to the non-Euclidean domain.
Feature Unlearning for Pre-trained GANs and VAEs
Moon, Saemi, Cho, Seunghyuk, Kim, Dongwoo
We tackle the problem of feature unlearning from a pre-trained image generative model: GANs and VAEs. Unlike a common unlearning task where an unlearning target is a subset of the training set, we aim to unlearn a specific feature, such as hairstyle from facial images, from the pre-trained generative models. As the target feature is only presented in a local region of an image, unlearning the entire image from the pre-trained model may result in losing other details in the remaining region of the image. To specify which features to unlearn, we collect randomly generated images that contain the target features. We then identify a latent representation corresponding to the target feature and then use the representation to fine-tune the pre-trained model. Through experiments on MNIST and CelebA datasets, we show that target features are successfully removed while keeping the fidelity of the original models. Further experiments with an adversarial attack show that the unlearned model is more robust under the presence of malicious parties.