Goto

Collaborating Authors

 Cho, Hyunsouk


Towards Fully-Automated Materials Discovery via Large-Scale Synthesis Dataset and Expert-Level LLM-as-a-Judge

arXiv.org Artificial Intelligence

Materials synthesis is vital for innovations such as energy storage, catalysis, electronics, and biomedical devices. Yet, the process relies heavily on empirical, trial-and-error methods guided by expert intuition. Our work aims to support the materials science community by providing a practical, data-driven resource. We have curated a comprehensive dataset of 17K expert-verified synthesis recipes from open-access literature, which forms the basis of our newly developed benchmark, AlchemyBench. AlchemyBench offers an end-to-end framework that supports research in large language models applied to synthesis prediction. It encompasses key tasks, including raw materials and equipment prediction, synthesis procedure generation, and characterization outcome forecasting. We propose an LLM-as-a-Judge framework that leverages large language models for automated evaluation, demonstrating strong statistical agreement with expert assessments. Overall, our contributions offer a supportive foundation for exploring the capabilities of LLMs in predicting and guiding materials synthesis, ultimately paving the way for more efficient experimental design and accelerated innovation in materials science.


DCC: Differentiable Cardinality Constraints for Partial Index Tracking

arXiv.org Artificial Intelligence

Index tracking is a popular passive investment strategy aimed at optimizing portfolios, but fully replicating an index can lead to high transaction costs. To address this, partial replication have been proposed. However, the cardinality constraint renders the problem non-convex, non-differentiable, and often NP-hard, leading to the use of heuristic or neural network-based methods, which can be non-interpretable or have NP-hard complexity. To overcome these limitations, we propose a Differentiable Cardinality Constraint ($\textbf{DCC}$) for index tracking and introduce a floating-point precision-aware method ($\textbf{DCC}_{fpp}$) to address implementation issues. We theoretically prove our methods calculate cardinality accurately and enforce actual cardinality with polynomial time complexity. We propose the range of the hyperparameter $a$ ensures that $\textbf{DCC}_{fpp}$ has no error in real implementations, based on theoretical proof and experiment. Our method applied to mathematical method outperforms baseline methods across various datasets, demonstrating the effectiveness of the identified hyperparameter $a$.


FLEX: Expert-level False-Less EXecution Metric for Reliable Text-to-SQL Benchmark

arXiv.org Artificial Intelligence

Text-to-SQL systems have become crucial for translating natural language into SQL queries in various industries, enabling non-technical users to perform complex data operations. The need for accurate evaluation methods has increased as these systems have grown more sophisticated. However, the Execution Accuracy (EX), the most prevalent evaluation metric, still shows many false positives and negatives. Thus, this paper introduces FLEX (False-Less EXecution), a novel approach to evaluating text-to-SQL systems using large language models (LLMs) to emulate human expert-level evaluation of SQL queries. Our metric improves agreement with human experts (from 62 to 87.04 in Cohen's kappa) with comprehensive context and sophisticated criteria. Our extensive experiments yield several key insights: (1) Models' performance increases by over 2.6 points on average, substantially affecting rankings on Spider and BIRD benchmarks; (2) The underestimation of models in EX primarily stems from annotation quality issues; and (3) Model performance on particularly challenging questions tends to be overestimated. This work contributes to a more accurate and nuanced evaluation of text-to-SQL systems, potentially reshaping our understanding of state-of-the-art performance in this field.


Can Large Language Models be Good Emotional Supporter? Mitigating Preference Bias on Emotional Support Conversation

arXiv.org Artificial Intelligence

Emotional Support Conversation (ESC) is a task aimed at alleviating individuals' emotional distress through daily conversation. Given its inherent complexity and non-intuitive nature, ESConv dataset incorporates support strategies to facilitate the generation of appropriate responses. Recently, despite the remarkable conversational ability of large language models (LLMs), previous studies have suggested that they often struggle with providing useful emotional support. Hence, this work initially analyzes the results of LLMs on ESConv, revealing challenges in selecting the correct strategy and a notable preference for a specific strategy. Motivated by these, we explore the impact of the inherent preference in LLMs on providing emotional support, and consequently, we observe that exhibiting high preference for specific strategies hinders effective emotional support, aggravating its robustness in predicting the appropriate strategy. Moreover, we conduct a methodological study to offer insights into the necessary approaches for LLMs to serve as proficient emotional supporters. Our findings emphasize that (1) low preference for specific strategies hinders the progress of emotional support, (2) external assistance helps reduce preference bias, and (3) existing LLMs alone cannot become good emotional supporters. These insights suggest promising avenues for future research to enhance the emotional intelligence of LLMs.


Break the Breakout: Reinventing LM Defense Against Jailbreak Attacks with Self-Refinement

arXiv.org Artificial Intelligence

Caution: This paper includes offensive words that could potentially cause unpleasantness. Language models (LMs) are vulnerable to exploitation for adversarial misuse. Training LMs for safety alignment is extensive and makes it hard to respond to fast-developing attacks immediately, such as jailbreaks. We propose self-refine with formatting that achieves outstanding safety even in non-safety-aligned LMs and evaluate our method alongside several defense baselines, demonstrating that it is the safest training-free method against jailbreak attacks. Additionally, we proposed a formatting method that improves the efficiency of the self-refine process while reducing attack success rates in fewer iterations. We've also observed that non-safety-aligned LMs outperform safety-aligned LMs in safety tasks by giving more helpful and safe responses. In conclusion, our findings can achieve less safety risk with fewer computational costs, allowing non-safety LM to be easily utilized in real-world service.


GTA: Gated Toxicity Avoidance for LM Performance Preservation

arXiv.org Artificial Intelligence

Caution: This paper includes offensive words that could potentially cause unpleasantness. The fast-paced evolution of generative language models such as GPT-4 has demonstrated outstanding results in various NLP generation tasks. However, due to the potential generation of offensive words related to race or gender, various Controllable Text Generation (CTG) methods have been proposed to mitigate the occurrence of harmful words. However, existing CTG methods not only reduce toxicity but also negatively impact several aspects of the language model's generation performance, including topic consistency, grammar, and perplexity. This paper explores the limitations of previous methods and introduces a novel solution in the form of a simple Gated Toxicity Avoidance (GTA) that can be applied to any CTG method. We also evaluate the effectiveness of the proposed GTA by comparing it with state-of-the-art CTG methods across various datasets. Our findings reveal that gated toxicity avoidance efficiently achieves comparable levels of toxicity reduction to the original CTG methods while preserving the generation performance of the language model.


Towards Proper Contrastive Self-supervised Learning Strategies For Music Audio Representation

arXiv.org Artificial Intelligence

The common research goal of self-supervised learning is to extract a general representation which an arbitrary downstream task would benefit from. In this work, we investigate music audio representation learned from different contrastive self-supervised learning schemes and empirically evaluate the embedded vectors on various music information retrieval (MIR) tasks where different levels of the music perception are concerned. We analyze the results to discuss the proper direction of contrastive learning strategies for different MIR tasks. We show that these representations convey a comprehensive information about the auditory characteristics of music in general, although each of the self-supervision strategies has its own effectiveness in certain aspect of information.


Self-Supervised Multimodal Opinion Summarization

arXiv.org Artificial Intelligence

Recently, opinion summarization, which is the generation of a summary from multiple reviews, has been conducted in a self-supervised manner by considering a sampled review as a pseudo summary. However, non-text data such as image and metadata related to reviews have been considered less often. To use the abundant information contained in non-text data, we propose a self-supervised multimodal opinion summarization framework called MultimodalSum. Our framework obtains a representation of each modality using a separate encoder for each modality, and the text decoder generates a summary. To resolve the inherent heterogeneity of multimodal data, we propose a multimodal training pipeline. We first pretrain the text encoder--decoder based solely on text modality data. Subsequently, we pretrain the non-text modality encoders by considering the pretrained text decoder as a pivot for the homogeneous representation of multimodal data. Finally, to fuse multimodal representations, we train the entire framework in an end-to-end manner. We demonstrate the superiority of MultimodalSum by conducting experiments on Yelp and Amazon datasets.


MeLU: Meta-Learned User Preference Estimator for Cold-Start Recommendation

arXiv.org Artificial Intelligence

This paper proposes a recommender system to alleviate the cold-start problem that can estimate user preferences based on only a small number of items. To identify a user's preference in the cold state, existing recommender systems, such as Netflix, initially provide items to a user; we call those items evidence candidates. Recommendations are then made based on the items selected by the user. Previous recommendation studies have two limitations: (1) the users who consumed a few items have poor recommendations and (2) inadequate evidence candidates are used to identify user preferences. We propose a meta-learning-based recommender system called MeLU to overcome these two limitations. From meta-learning, which can rapidly adopt new task with a few examples, MeLU can estimate new user's preferences with a few consumed items. In addition, we provide an evidence candidate selection strategy that determines distinguishing items for customized preference estimation. We validate MeLU with two benchmark datasets, and the proposed model reduces at least 5.92% mean absolute error than two comparative models on the datasets. We also conduct a user study experiment to verify the evidence selection strategy.


Machine-Translated Knowledge Transfer for Commonsense Causal Reasoning

AAAI Conferences

This paper studies the problem of multilingual causal reasoning in resource-poor languages. Existing approaches, translating into the most probable resource-rich language such as English, suffer in the presence of translation and language gaps between different cultural area, which leads to the loss of causality. To overcome these challenges, our goal is thus to identify key techniques to construct a new causality network of cause-effect terms, targeted for the machine-translated English, but without any language-specific knowledge of resource-poor languages. In our evaluations with three languages, Korean, Chinese, and French, our proposed method consistently outperforms all baselines, achieving up-to 69.0% reasoning accuracy, which is close to the state-of-the-art accuracy 70.2% achieved on English.