Goto

Collaborating Authors

 Chng, Eng Siong


Speech Enhancement Using Continuous Embeddings of Neural Audio Codec

arXiv.org Artificial Intelligence

Recent advancements in Neural Audio Codec (NAC) models have inspired their use in various speech processing tasks, including speech enhancement (SE). In this work, we propose a novel, efficient SE approach by leveraging the pre-quantization output of a pretrained NAC encoder. Unlike prior NAC-based SE methods, which process discrete speech tokens using Language Models (LMs), we perform SE within the continuous embedding space of the pretrained NAC, which is highly compressed along the time dimension for efficient representation. Our lightweight SE model, optimized through an embedding-level loss, delivers results comparable to SE baselines trained on larger datasets, with a significantly lower real-time factor of 0.005. Additionally, our method achieves a low GMAC of 3.94, reducing complexity 18-fold compared to Sepformer in a simulated cloud-based audio transmission environment. This work highlights a new, efficient NAC-based SE solution, particularly suitable for cloud applications where NAC is used to compress audio before transmission. Copyright 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


Audio Large Language Models Can Be Descriptive Speech Quality Evaluators

arXiv.org Artificial Intelligence

An ideal multimodal agent should be aware of the quality of its input modalities. Recent advances have enabled large language models (LLMs) to incorporate auditory systems for handling various speech-related tasks. However, most audio LLMs remain unaware of the quality of the speech they process. This limitation arises because speech quality evaluation is typically excluded from multi-task training due to the lack of suitable datasets. To address this, we introduce the first natural language-based speech evaluation corpus, generated from authentic human ratings. In addition to the overall Mean Opinion Score (MOS), this corpus offers detailed analysis across multiple dimensions and identifies causes of quality degradation. It also enables descriptive comparisons between two speech samples (A/B tests) with human-like judgment. Leveraging this corpus, we propose an alignment approach with LLM distillation (ALLD) to guide the audio LLM in extracting relevant information from raw speech and generating meaningful responses. Experimental results demonstrate that ALLD outperforms the previous state-of-the-art regression model in MOS prediction, with a mean square error of 0.17 and an A/B test accuracy of 98.6%. Additionally, the generated responses achieve BLEU scores of 25.8 and 30.2 on two tasks, surpassing the capabilities of task-specific models. This work advances the comprehensive perception of speech signals by audio LLMs, contributing to the development of real-world auditory and sensory intelligent agents.


Continual Learning with Embedding Layer Surgery and Task-wise Beam Search using Whisper

arXiv.org Artificial Intelligence

Current Multilingual ASR models only support a fraction of the world's languages. Continual Learning (CL) aims to tackle this problem by adding new languages to pre-trained models while avoiding the loss of performance on existing languages, also known as Catastrophic Forgetting (CF). However, existing CL methods overlook the adaptation of the token embedding lookup table at the decoder, despite its significant contribution to CF. We propose Embedding Layer Surgery where separate copies of the token embeddings are created for each new languages, and one of the copies is selected to replace the old languages embeddings when transcribing the corresponding new language. Unfortunately, this approach means LID errors also cause incorrect ASR embedding selection. Our Task-wise Beam Search allows self-correction for such mistakes. By adapting Whisper to 10 hours of data for each of 10 unseen languages from Common Voice, results show that our method reduces the Average WER (AWER) of pre-trained languages from 14.2% to 11.9% compared with Experience Replay, without compromising the AWER of the unseen languages.


Audio-CoT: Exploring Chain-of-Thought Reasoning in Large Audio Language Model

arXiv.org Artificial Intelligence

Large Audio-Language Models (LALMs) have demonstrated remarkable performance in tasks involving audio perception and understanding, such as speech recognition and audio captioning. However, their reasoning capabilities - critical for solving complex real-world problems - remain underexplored. In this work, we conduct the first exploration into integrating Chain-of-Thought (CoT) reasoning into LALMs to enhance their reasoning ability across auditory modalities. We evaluate representative CoT methods, analyzing their performance in both information extraction and reasoning tasks across sound, music, and speech domains. Our findings reveal that CoT methods significantly improve performance on easy and medium tasks but encounter challenges with hard tasks, where reasoning chains can confuse the model rather than improve accuracy. Additionally, we identify a positive correlation between reasoning path length and accuracy, demonstrating the potential of scaling inference for advanced instruction-following and reasoning. This study not only highlights the promise of CoT in enhancing LALM reasoning capabilities but also identifies key limitations and provides actionable directions for future research.


An Investigation on the Potential of KAN in Speech Enhancement

arXiv.org Artificial Intelligence

High-fidelity speech enhancement often requires sophisticated modeling to capture intricate, multiscale patterns. Standard activation functions, while introducing nonlinearity, lack the flexibility to fully address this complexity. Kolmogorov-Arnold Networks (KAN), an emerging methodology that employs learnable activation functions on graph edges, present a promising alternative. This work investigates two novel KAN variants based on rational and radial basis functions for speech enhancement. We integrate the rational variant into the 1D CNN blocks of Demucs and the GRU-Transformer blocks of MP-SENet, while the radial variant is adapted to the 2D CNN-based decoders of MP-SENet. Experiments on the VoiceBank-DEMAND dataset show that replacing standard activations with KAN-based activations improves speech quality across both the time-domain and time-frequency domain methods with minimal impact on model size and FLOP, underscoring KAN's potential to improve speech enhancement models.


Noro: A Noise-Robust One-shot Voice Conversion System with Hidden Speaker Representation Capabilities

arXiv.org Artificial Intelligence

One-shot voice conversion (VC) aims to alter the timbre of speech from a source speaker to match that of a target speaker using just a single reference speech from the target, while preserving the semantic content of the original source speech. Despite advancements in one-shot VC, its effectiveness decreases in real-world scenarios where reference speeches, often sourced from the internet, contain various disturbances like background noise. To address this issue, we introduce Noro, a Noise Robust One-shot VC system. Noro features innovative components tailored for VC using noisy reference speeches, including a dual-branch reference encoding module and a noise-agnostic contrastive speaker loss. Experimental results demonstrate that Noro outperforms our baseline system in both clean and noisy scenarios, highlighting its efficacy for real-world applications. Additionally, we investigate the hidden speaker representation capabilities of our baseline system by repurposing its reference encoder as a speaker encoder. The results shows that it is competitive with several advanced self-supervised learning models for speaker representation under the SUPERB settings, highlighting the potential for advancing speaker representation learning through one-shot VC task.


DiaSynth: Synthetic Dialogue Generation Framework for Low Resource Dialogue Applications

arXiv.org Artificial Intelligence

The scarcity of domain-specific dialogue datasets limits the development of dialogue systems across applications. Existing research is constrained by general or niche datasets that lack sufficient scale for training dialogue systems. To address this gap, we introduce DiaSynth - a synthetic dialogue generation framework capable of generating high-quality, contextually rich dialogues across a wide range of domains. Unlike existing frameworks, DiaSynth uses Large Language Models (LLMs) and Chain of Thought (CoT) reasoning to generate dynamic, domain-specific dialogues with simulated personas and diverse conversational features. We perform our experiments by generating synthetic data using different LLMs and few-shot examples from DialogSum and SAMSum. The pretrained language models fine-tuned on the synthetic data outperform the base models by 16.47% on dialogue summarization, while the comparison between models fine-tuned on in-domain data and synthetic data shows that the synthetic data is able to capture 90.48% of the performance distribution of the in-domain data on dialogue summarization. The quality of the data generated also increases as we increase the size of LLM from 3B to 8B. These results validate DiaSynth's potential as a robust alternative to traditional data collection methods. We open source the code and data generated for future research.


NTU-NPU System for Voice Privacy 2024 Challenge

arXiv.org Artificial Intelligence

B3 The baseline system B3 uses a Wasserstein generative adversarial In this work, we describe our submissions for the Voice Privacy network with Quadratic Transport Cost (WGAN-QC) [6] Challenge 2024. Rather than proposing a novel speech to generate artificial pseudo-speaker embeddings, anonymizing anonymization system, we enhance the provided baselines to the speaker's identity through four main steps: meet all required conditions and improve evaluated metrics. Specifically, we implement emotion embedding and experiment 1. Phonetic Transcriptions Extraction: Phonetic transcriptions with WavLM and ECAPA2 speaker embedders for the B3 baseline.


Bridging Speech and Text: Enhancing ASR with Pinyin-to-Character Pre-training in LLMs

arXiv.org Artificial Intelligence

The integration of large language models (LLMs) with pre-trained speech models has opened up new avenues in automatic speech recognition (ASR). While LLMs excel in multimodal understanding tasks, effectively leveraging their capabilities for ASR remains a significant challenge. This paper presents a novel training approach to enhance LLM performance in ASR tasks. We propose pre-training LLMs on Pinyin embedding sequences, which represent pronunciation features, to generate corresponding Chinese characters. This step enables the LLM to adapt to generating text from pronunciation features before encountering real speech data. Furthermore, we fine-tune the LoRA parameters to enhance the LLM's understanding of speech modality information. In AISHELL-1 corpus, our approach yields a 9.5% relative improvement in ASR tasks compared to the baseline without Pinyi-to-Character pre-training. Additionally, incorporating auxiliary text data for Pinyi-to-Character pre-training further boosts performance, achieving a 19.0% relative improvement.


Continual Learning Optimizations for Auto-regressive Decoder of Multilingual ASR systems

arXiv.org Artificial Intelligence

Continual Learning (CL) involves fine-tuning pre-trained models with new data while maintaining the performance on the pre-trained data. This is particularly relevant for expanding multilingual ASR (MASR) capabilities. However, existing CL methods, mainly designed for computer vision and reinforcement learning tasks, often yield sub-optimal results when directly applied to MASR. We hypothesise that this is because CL of the auto-regressive decoder in the MASR model is difficult. To verify this, we propose four optimizations on the decoder. They include decoder-layer gradient surgery, freezing unused token embeddings, suppressing output of newly added tokens, and learning rate re-scaling. Our experiments on adapting Whisper to 10 unseen languages from the Common Voice dataset demonstrate that these optimizations reduce the Average Word Error Rate (AWER) of pretrained languages from 14.2% to 12.4% compared with Experience Replay, without compromising the AWER of new languages.