Goto

Collaborating Authors

 Chiang, Patrick Yin


BioMamba: Leveraging Spectro-Temporal Embedding in Bidirectional Mamba for Enhanced Biosignal Classification

arXiv.org Artificial Intelligence

Biological signals, such as electroencephalograms (EEGs) and electrocardiograms (ECGs), play a pivotal role in numerous clinical practices, such as diagnosing brain and cardiac arrhythmic diseases. Existing methods for biosignal classification rely on Attention-based frameworks with dense Feed Forward layers, which lead to inefficient learning, high computational overhead, and suboptimal performance. In this work, we introduce BioMamba, a Spectro-Temporal Embedding strategy applied to the Bidirectional Mamba framework with Sparse Feed Forward layers to enable effective learning of biosignal sequences. By integrating these three key components, BioMamba effectively addresses the limitations of existing methods. Extensive experiments demonstrate that BioMamba significantly outperforms state-of-the-art methods with marked improvement in classification performance. The advantages of the proposed BioMamba include (1) Reliability: BioMamba consistently delivers robust results, confirmed across six evaluation metrics. (2) Efficiency: We assess both model and training efficiency, the BioMamba demonstrates computational effectiveness by reducing model size and resource consumption compared to existing approaches. (3) Generality: With the capacity to effectively classify a diverse set of tasks, BioMamba demonstrates adaptability and effectiveness across various domains and applications.


FastPillars: A Deployment-friendly Pillar-based 3D Detector

arXiv.org Artificial Intelligence

The deployment of 3D detectors strikes one of the major challenges in real-world self-driving scenarios. Existing BEV-based (i.e., Bird Eye View) detectors favor sparse convolutions (known as SPConv) to speed up training and inference, which puts a hard barrier for deployment, especially for on-device applications. In this paper, to tackle the challenge of efficient 3D object detection from an industry perspective, we devise a deployment-friendly pillar-based 3D detector, termed FastPillars. First, we introduce a novel lightweight Max-and-Attention Pillar Encoding (MAPE) module specially for enhancing small 3D objects. Second, we propose a simple yet effective principle for designing a backbone in pillar-based 3D detection. We construct FastPillars based on these designs, achieving high performance and low latency without SPConv. Extensive experiments on two large-scale datasets demonstrate the effectiveness and efficiency of FastPillars for on-device 3D detection regarding both performance and speed. Specifically, FastPillars delivers state-of-the-art accuracy on Waymo Open Dataset with 1.8X speed up and 3.8 mAPH/L2 improvement over CenterPoint (SPConv-based). Our code is publicly available at: https://github.com/StiphyJay/FastPillars.