Goto

Collaborating Authors

 Chi, Zhouyang


Rebalanced Multimodal Learning with Data-aware Unimodal Sampling

arXiv.org Artificial Intelligence

To address the modality learning degeneration caused by modality imbalance, existing multimodal learning~(MML) approaches primarily attempt to balance the optimization process of each modality from the perspective of model learning. However, almost all existing methods ignore the modality imbalance caused by unimodal data sampling, i.e., equal unimodal data sampling often results in discrepancies in informational content, leading to modality imbalance. Therefore, in this paper, we propose a novel MML approach called \underline{D}ata-aware \underline{U}nimodal \underline{S}ampling~(\method), which aims to dynamically alleviate the modality imbalance caused by sampling. Specifically, we first propose a novel cumulative modality discrepancy to monitor the multimodal learning process. Based on the learning status, we propose a heuristic and a reinforcement learning~(RL)-based data-aware unimodal sampling approaches to adaptively determine the quantity of sampled data at each iteration, thus alleviating the modality imbalance from the perspective of sampling. Meanwhile, our method can be seamlessly incorporated into almost all existing multimodal learning approaches as a plugin. Experiments demonstrate that \method~can achieve the best performance by comparing with diverse state-of-the-art~(SOTA) baselines.


Multimodal Classification via Modal-Aware Interactive Enhancement

arXiv.org Artificial Intelligence

Due to the notorious modality imbalance problem, mul-timodal learning (MML) leads to the phenomenon of optimization imbalance, thus struggling to achieve satisfactory performance. Recently, some representative methods have been proposed to boost the performance, mainly focusing on adaptive adjusting the optimization of each modality to rebalance the learning speed of dominant and non-dominant modalities. To better facilitate the interaction of model information in multi-modal learning, in this paper, we propose a novel mul-timodal learning method, called m odal-aware i nteractive e nhancement (MIE). Specifically, we first utilize an optimization strategy based on sharpness aware minimization (SAM) to smooth the learning objective during the forward phase. Then, with the help of the geometry property of SAM, we propose a gradient modification strategy to impose the influence between different modalities during the backward phase. Therefore, we can improve the generalization ability and alleviate the modality forgetting phenomenon simultaneously for mul-timodal learning. Extensive experiments on widely used datasets demonstrate that our proposed method can outperform various state-of-the-art baselines to achieve the best performance.


Solution for Emotion Prediction Competition of Workshop on Emotionally and Culturally Intelligent AI

arXiv.org Artificial Intelligence

This report provide a detailed description of the method that we explored and proposed in the WECIA Emotion Prediction Competition (EPC), which predicts a person's emotion through an artistic work with a comment. The dataset of this competition is ArtELingo, designed to encourage work on diversity across languages and cultures. The dataset has two main challenges, namely modal imbalance problem and language-cultural differences problem. In order to address this issue, we propose a simple yet effective approach called single-multi modal with Emotion-Cultural specific prompt(ECSP), which focuses on using the single modal message to enhance the performance of multimodal models and a well-designed prompt to reduce cultural differences problem. To clarify, our approach contains two main blocks: (1)XLM-R\cite{conneau2019unsupervised} based unimodal model and X$^2$-VLM\cite{zeng2022x} based multimodal model (2) Emotion-Cultural specific prompt. Our approach ranked first in the final test with a score of 0.627.