Chi, Ethan A.
modeLing: A Novel Dataset for Testing Linguistic Reasoning in Language Models
Chi, Nathan A., Malchev, Teodor, Kong, Riley, Chi, Ryan A., Huang, Lucas, Chi, Ethan A., McCoy, R. Thomas, Radev, Dragomir
We introduce modeLing, a novel benchmark of Linguistics Olympiad-style puzzles which tests few-shot reasoning in AI systems. Solving these puzzles necessitates inferring aspects of a language's grammatical structure from a small number of examples. Such puzzles provide a natural testbed for language models, as they require compositional generalization and few-shot inductive reasoning. Consisting solely of new puzzles written specifically for this work, modeLing has no risk of appearing in the training data of existing AI systems: this ameliorates the risk of data leakage, a potential confounder for many prior evaluations of reasoning. Evaluating several large open source language models and GPT on our benchmark, we observe non-negligible accuracy, demonstrating few-shot emergent reasoning ability which cannot merely be attributed to shallow memorization. However, imperfect model performance suggests that modeLing can be used to measure further progress in linguistic reasoning.
LINGOLY: A Benchmark of Olympiad-Level Linguistic Reasoning Puzzles in Low-Resource and Extinct Languages
Bean, Andrew M., Hellsten, Simi, Mayne, Harry, Magomere, Jabez, Chi, Ethan A., Chi, Ryan, Hale, Scott A., Kirk, Hannah Rose
In this paper, we present the LingOly benchmark, a novel benchmark for advanced reasoning abilities in large language models. Using challenging Linguistic Olympiad puzzles, we evaluate (i) capabilities for in-context identification and generalisation of linguistic patterns in very low-resource or extinct languages, and (ii) abilities to follow complex task instructions. The LingOly benchmark covers more than 90 mostly low-resource languages, minimising issues of data contamination, and contains 1,133 problems across 6 formats and 5 levels of human difficulty. We assess performance with both direct accuracy and comparison to a no-context baseline to penalise memorisation. Scores from 11 state-of-the-art LLMs demonstrate the benchmark to be challenging, and models perform poorly on the higher difficulty problems. On harder problems, even the top model only achieved 38.7% accuracy, 24.7% improvement over the no-context baseline. Large closed models typically outperform open models, and in general, the higher resource the language, the better the scores. These results indicate, in absence of memorisation, true multi-step out-of-domain reasoning remains a challenge for current language models.
Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models
Srivastava, Aarohi, Rastogi, Abhinav, Rao, Abhishek, Shoeb, Abu Awal Md, Abid, Abubakar, Fisch, Adam, Brown, Adam R., Santoro, Adam, Gupta, Aditya, Garriga-Alonso, Adrià, Kluska, Agnieszka, Lewkowycz, Aitor, Agarwal, Akshat, Power, Alethea, Ray, Alex, Warstadt, Alex, Kocurek, Alexander W., Safaya, Ali, Tazarv, Ali, Xiang, Alice, Parrish, Alicia, Nie, Allen, Hussain, Aman, Askell, Amanda, Dsouza, Amanda, Slone, Ambrose, Rahane, Ameet, Iyer, Anantharaman S., Andreassen, Anders, Madotto, Andrea, Santilli, Andrea, Stuhlmüller, Andreas, Dai, Andrew, La, Andrew, Lampinen, Andrew, Zou, Andy, Jiang, Angela, Chen, Angelica, Vuong, Anh, Gupta, Animesh, Gottardi, Anna, Norelli, Antonio, Venkatesh, Anu, Gholamidavoodi, Arash, Tabassum, Arfa, Menezes, Arul, Kirubarajan, Arun, Mullokandov, Asher, Sabharwal, Ashish, Herrick, Austin, Efrat, Avia, Erdem, Aykut, Karakaş, Ayla, Roberts, B. Ryan, Loe, Bao Sheng, Zoph, Barret, Bojanowski, Bartłomiej, Özyurt, Batuhan, Hedayatnia, Behnam, Neyshabur, Behnam, Inden, Benjamin, Stein, Benno, Ekmekci, Berk, Lin, Bill Yuchen, Howald, Blake, Orinion, Bryan, Diao, Cameron, Dour, Cameron, Stinson, Catherine, Argueta, Cedrick, Ramírez, César Ferri, Singh, Chandan, Rathkopf, Charles, Meng, Chenlin, Baral, Chitta, Wu, Chiyu, Callison-Burch, Chris, Waites, Chris, Voigt, Christian, Manning, Christopher D., Potts, Christopher, Ramirez, Cindy, Rivera, Clara E., Siro, Clemencia, Raffel, Colin, Ashcraft, Courtney, Garbacea, Cristina, Sileo, Damien, Garrette, Dan, Hendrycks, Dan, Kilman, Dan, Roth, Dan, Freeman, Daniel, Khashabi, Daniel, Levy, Daniel, González, Daniel Moseguí, Perszyk, Danielle, Hernandez, Danny, Chen, Danqi, Ippolito, Daphne, Gilboa, Dar, Dohan, David, Drakard, David, Jurgens, David, Datta, Debajyoti, Ganguli, Deep, Emelin, Denis, Kleyko, Denis, Yuret, Deniz, Chen, Derek, Tam, Derek, Hupkes, Dieuwke, Misra, Diganta, Buzan, Dilyar, Mollo, Dimitri Coelho, Yang, Diyi, Lee, Dong-Ho, Schrader, Dylan, Shutova, Ekaterina, Cubuk, Ekin Dogus, Segal, Elad, Hagerman, Eleanor, Barnes, Elizabeth, Donoway, Elizabeth, Pavlick, Ellie, Rodola, Emanuele, Lam, Emma, Chu, Eric, Tang, Eric, Erdem, Erkut, Chang, Ernie, Chi, Ethan A., Dyer, Ethan, Jerzak, Ethan, Kim, Ethan, Manyasi, Eunice Engefu, Zheltonozhskii, Evgenii, Xia, Fanyue, Siar, Fatemeh, Martínez-Plumed, Fernando, Happé, Francesca, Chollet, Francois, Rong, Frieda, Mishra, Gaurav, Winata, Genta Indra, de Melo, Gerard, Kruszewski, Germán, Parascandolo, Giambattista, Mariani, Giorgio, Wang, Gloria, Jaimovitch-López, Gonzalo, Betz, Gregor, Gur-Ari, Guy, Galijasevic, Hana, Kim, Hannah, Rashkin, Hannah, Hajishirzi, Hannaneh, Mehta, Harsh, Bogar, Hayden, Shevlin, Henry, Schütze, Hinrich, Yakura, Hiromu, Zhang, Hongming, Wong, Hugh Mee, Ng, Ian, Noble, Isaac, Jumelet, Jaap, Geissinger, Jack, Kernion, Jackson, Hilton, Jacob, Lee, Jaehoon, Fisac, Jaime Fernández, Simon, James B., Koppel, James, Zheng, James, Zou, James, Kocoń, Jan, Thompson, Jana, Wingfield, Janelle, Kaplan, Jared, Radom, Jarema, Sohl-Dickstein, Jascha, Phang, Jason, Wei, Jason, Yosinski, Jason, Novikova, Jekaterina, Bosscher, Jelle, Marsh, Jennifer, Kim, Jeremy, Taal, Jeroen, Engel, Jesse, Alabi, Jesujoba, Xu, Jiacheng, Song, Jiaming, Tang, Jillian, Waweru, Joan, Burden, John, Miller, John, Balis, John U., Batchelder, Jonathan, Berant, Jonathan, Frohberg, Jörg, Rozen, Jos, Hernandez-Orallo, Jose, Boudeman, Joseph, Guerr, Joseph, Jones, Joseph, Tenenbaum, Joshua B., Rule, Joshua S., Chua, Joyce, Kanclerz, Kamil, Livescu, Karen, Krauth, Karl, Gopalakrishnan, Karthik, Ignatyeva, Katerina, Markert, Katja, Dhole, Kaustubh D., Gimpel, Kevin, Omondi, Kevin, Mathewson, Kory, Chiafullo, Kristen, Shkaruta, Ksenia, Shridhar, Kumar, McDonell, Kyle, Richardson, Kyle, Reynolds, Laria, Gao, Leo, Zhang, Li, Dugan, Liam, Qin, Lianhui, Contreras-Ochando, Lidia, Morency, Louis-Philippe, Moschella, Luca, Lam, Lucas, Noble, Lucy, Schmidt, Ludwig, He, Luheng, Colón, Luis Oliveros, Metz, Luke, Şenel, Lütfi Kerem, Bosma, Maarten, Sap, Maarten, ter Hoeve, Maartje, Farooqi, Maheen, Faruqui, Manaal, Mazeika, Mantas, Baturan, Marco, Marelli, Marco, Maru, Marco, Quintana, Maria Jose Ramírez, Tolkiehn, Marie, Giulianelli, Mario, Lewis, Martha, Potthast, Martin, Leavitt, Matthew L., Hagen, Matthias, Schubert, Mátyás, Baitemirova, Medina Orduna, Arnaud, Melody, McElrath, Melvin, Yee, Michael A., Cohen, Michael, Gu, Michael, Ivanitskiy, Michael, Starritt, Michael, Strube, Michael, Swędrowski, Michał, Bevilacqua, Michele, Yasunaga, Michihiro, Kale, Mihir, Cain, Mike, Xu, Mimee, Suzgun, Mirac, Walker, Mitch, Tiwari, Mo, Bansal, Mohit, Aminnaseri, Moin, Geva, Mor, Gheini, Mozhdeh, T, Mukund Varma, Peng, Nanyun, Chi, Nathan A., Lee, Nayeon, Krakover, Neta Gur-Ari, Cameron, Nicholas, Roberts, Nicholas, Doiron, Nick, Martinez, Nicole, Nangia, Nikita, Deckers, Niklas, Muennighoff, Niklas, Keskar, Nitish Shirish, Iyer, Niveditha S., Constant, Noah, Fiedel, Noah, Wen, Nuan, Zhang, Oliver, Agha, Omar, Elbaghdadi, Omar, Levy, Omer, Evans, Owain, Casares, Pablo Antonio Moreno, Doshi, Parth, Fung, Pascale, Liang, Paul Pu, Vicol, Paul, Alipoormolabashi, Pegah, Liao, Peiyuan, Liang, Percy, Chang, Peter, Eckersley, Peter, Htut, Phu Mon, Hwang, Pinyu, Miłkowski, Piotr, Patil, Piyush, Pezeshkpour, Pouya, Oli, Priti, Mei, Qiaozhu, Lyu, Qing, Chen, Qinlang, Banjade, Rabin, Rudolph, Rachel Etta, Gabriel, Raefer, Habacker, Rahel, Risco, Ramon, Millière, Raphaël, Garg, Rhythm, Barnes, Richard, Saurous, Rif A., Arakawa, Riku, Raymaekers, Robbe, Frank, Robert, Sikand, Rohan, Novak, Roman, Sitelew, Roman, LeBras, Ronan, Liu, Rosanne, Jacobs, Rowan, Zhang, Rui, Salakhutdinov, Ruslan, Chi, Ryan, Lee, Ryan, Stovall, Ryan, Teehan, Ryan, Yang, Rylan, Singh, Sahib, Mohammad, Saif M., Anand, Sajant, Dillavou, Sam, Shleifer, Sam, Wiseman, Sam, Gruetter, Samuel, Bowman, Samuel R., Schoenholz, Samuel S., Han, Sanghyun, Kwatra, Sanjeev, Rous, Sarah A., Ghazarian, Sarik, Ghosh, Sayan, Casey, Sean, Bischoff, Sebastian, Gehrmann, Sebastian, Schuster, Sebastian, Sadeghi, Sepideh, Hamdan, Shadi, Zhou, Sharon, Srivastava, Shashank, Shi, Sherry, Singh, Shikhar, Asaadi, Shima, Gu, Shixiang Shane, Pachchigar, Shubh, Toshniwal, Shubham, Upadhyay, Shyam, Shyamolima, null, Debnath, null, Shakeri, Siamak, Thormeyer, Simon, Melzi, Simone, Reddy, Siva, Makini, Sneha Priscilla, Lee, Soo-Hwan, Torene, Spencer, Hatwar, Sriharsha, Dehaene, Stanislas, Divic, Stefan, Ermon, Stefano, Biderman, Stella, Lin, Stephanie, Prasad, Stephen, Piantadosi, Steven T., Shieber, Stuart M., Misherghi, Summer, Kiritchenko, Svetlana, Mishra, Swaroop, Linzen, Tal, Schuster, Tal, Li, Tao, Yu, Tao, Ali, Tariq, Hashimoto, Tatsu, Wu, Te-Lin, Desbordes, Théo, Rothschild, Theodore, Phan, Thomas, Wang, Tianle, Nkinyili, Tiberius, Schick, Timo, Kornev, Timofei, Tunduny, Titus, Gerstenberg, Tobias, Chang, Trenton, Neeraj, Trishala, Khot, Tushar, Shultz, Tyler, Shaham, Uri, Misra, Vedant, Demberg, Vera, Nyamai, Victoria, Raunak, Vikas, Ramasesh, Vinay, Prabhu, Vinay Uday, Padmakumar, Vishakh, Srikumar, Vivek, Fedus, William, Saunders, William, Zhang, William, Vossen, Wout, Ren, Xiang, Tong, Xiaoyu, Zhao, Xinran, Wu, Xinyi, Shen, Xudong, Yaghoobzadeh, Yadollah, Lakretz, Yair, Song, Yangqiu, Bahri, Yasaman, Choi, Yejin, Yang, Yichi, Hao, Yiding, Chen, Yifu, Belinkov, Yonatan, Hou, Yu, Hou, Yufang, Bai, Yuntao, Seid, Zachary, Zhao, Zhuoye, Wang, Zijian, Wang, Zijie J., Wang, Zirui, Wu, Ziyi
Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG-bench). BIG-bench currently consists of 204 tasks, contributed by 450 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood development, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.