Chevalier, Samuel
Achieving the Tightest Relaxation of Sigmoids for Formal Verification
Chevalier, Samuel, Starkenburg, Duncan, Dvijotham, Krishnamurthy
In the field of formal verification, Neural Networks (NNs) are typically reformulated into equivalent mathematical programs which are optimized over. To overcome the inherent non-convexity of these reformulations, convex relaxations of nonlinear activation functions are typically utilized. Common relaxations (i.e., static linear cuts) of "S-shaped" activation functions, however, can be overly loose, slowing down the overall verification process. In this paper, we derive tuneable hyperplanes which upper and lower bound the sigmoid activation function. When tuned in the dual space, these affine bounds smoothly rotate around the nonlinear manifold of the sigmoid activation function. This approach, termed $\alpha$-sig, allows us to tractably incorporate the tightest possible, element-wise convex relaxation of the sigmoid activation function into a formal verification framework. We embed these relaxations inside of large verification tasks and compare their performance to LiRPA and $\alpha$-CROWN, a state-of-the-art verification duo.
GPU-Accelerated Verification of Machine Learning Models for Power Systems
Chevalier, Samuel, Murzakhanov, Ilgiz, Chatzivasileiadis, Spyros
Computational tools for rigorously verifying the performance of large-scale machine learning (ML) models have progressed significantly in recent years. The most successful solvers employ highly specialized, GPU-accelerated branch and bound routines. Such tools are crucial for the successful deployment of machine learning applications in safety-critical systems, such as power systems. Despite their successes, however, barriers prevent out-of-the-box application of these routines to power system problems. This paper addresses this issue in two key ways. First, for the first time to our knowledge, we enable the simultaneous verification of multiple verification problems (e.g., checking for the violation of all line flow constraints simultaneously and not by solving individual verification problems). For that, we introduce an exact transformation that converts the "worst-case" violation across a set of potential violations to a series of ReLU-based layers that augment the original neural network. This allows verifiers to interpret them directly. Second, power system ML models often must be verified to satisfy power flow constraints. We propose a dualization procedure which encodes linear equality and inequality constraints directly into the verification problem; and in a manner which is mathematically consistent with the specialized verification tools. To demonstrate these innovations, we verify problems associated with data-driven security constrained DC-OPF solvers. We build and test our first set of innovations using the $\alpha,\beta$-CROWN solver, and we benchmark against Gurobi 10.0. Our contributions achieve a speedup that can exceed 100x and allow higher degrees of verification flexibility.
Global Performance Guarantees for Neural Network Models of AC Power Flow
Chevalier, Samuel, Chatzivasileiadis, Spyros
Machine learning can generate black-box surrogate models which are both extremely fast and highly accurate. Rigorously verifying the accuracy of these black-box models, however, is computationally challenging. When it comes to power systems, learning AC power flow is the cornerstone of any machine learning surrogate model wishing to drastically accelerate computations, whether it is for optimization, control, or dynamics. This paper develops for the first time, to our knowledge, a tractable neural network verification procedure which incorporates the ground truth of the non-linear AC power flow equations to determine worst-case neural network performance. Our approach, termed Sequential Targeted Tightening (STT), leverages a loosely convexified reformulation of the original verification problem, which is a mixed integer quadratic program (MIQP). Using the sequential addition of targeted cuts, we iteratively tighten our formulation until either the solution is sufficiently tight or a satisfactory performance guarantee has been generated. After learning neural network models of the 14, 57, 118, and 200-bus PGLib test cases, we compare the performance guarantees generated by our STT procedure with ones generated by a state-of-the-art MIQP solver, Gurobi 9.5. We show that STT often generates performance guarantees which are orders of magnitude tighter than the MIQP upper bound.
Closing the Loop: A Framework for Trustworthy Machine Learning in Power Systems
Stiasny, Jochen, Chevalier, Samuel, Nellikkath, Rahul, Sævarsson, Brynjar, Chatzivasileiadis, Spyros
Deep decarbonization of the energy sector will require massive penetration of stochastic renewable energy resources and an enormous amount of grid asset coordination; this represents a challenging paradigm for the power system operators who are tasked with maintaining grid stability and security in the face of such changes. With its ability to learn from complex datasets and provide predictive solutions on fast timescales, machine learning (ML) is well-posed to help overcome these challenges as power systems transform in the coming decades. In this work, we outline five key challenges (dataset generation, data pre-processing, model training, model assessment, and model embedding) associated with building trustworthy ML models which learn from physics-based simulation data. We then demonstrate how linking together individual modules, each of which overcomes a respective challenge, at sequential stages in the machine learning pipeline can help enhance the overall performance of the training process. In particular, we implement methods that connect different elements of the learning pipeline through feedback, thus "closing the loop" between model training, performance assessments, and re-training. We demonstrate the effectiveness of this framework, its constituent modules, and its feedback connections by learning the N-1 small-signal stability margin associated with a detailed model of a proposed North Sea Wind Power Hub system.