Goto

Collaborating Authors

 Cheng, Mingfei


DriveTester: A Unified Platform for Simulation-Based Autonomous Driving Testing

arXiv.org Artificial Intelligence

Simulation-based testing plays a critical role in evaluating the safety and reliability of autonomous driving systems (ADSs). However, one of the key challenges in ADS testing is the complexity of preparing and configuring simulation environments, particularly in terms of compatibility and stability between the simulator and the ADS. This complexity often results in researchers dedicating significant effort to customize their own environments, leading to disparities in development platforms and underlying systems. Consequently, reproducing and comparing these methodologies on a unified ADS testing platform becomes difficult. To address these challenges, we introduce DriveTester, a unified simulation-based testing platform built on Apollo, one of the most widely used open-source, industrial-level ADS platforms. DriveTester provides a consistent and reliable environment, integrates a lightweight traffic simulator, and incorporates various state-of-the-art ADS testing techniques. This enables researchers to efficiently develop, test, and compare their methods within a standardized platform, fostering reproducibility and comparison across different ADS testing approaches. The code is available: https://github.com/MingfeiCheng/DriveTester.


CofiPara: A Coarse-to-fine Paradigm for Multimodal Sarcasm Target Identification with Large Multimodal Models

arXiv.org Artificial Intelligence

Social media abounds with multimodal sarcasm, and identifying sarcasm targets is particularly challenging due to the implicit incongruity not directly evident in the text and image modalities. Current methods for Multimodal Sarcasm Target Identification (MSTI) predominantly focus on superficial indicators in an end-to-end manner, overlooking the nuanced understanding of multimodal sarcasm conveyed through both the text and image. This paper proposes a versatile MSTI framework with a coarse-to-fine paradigm, by augmenting sarcasm explainability with reasoning and pre-training knowledge. Inspired by the powerful capacity of Large Multimodal Models (LMMs) on multimodal reasoning, we first engage LMMs to generate competing rationales for coarser-grained pre-training of a small language model on multimodal sarcasm detection. We then propose fine-tuning the model for finer-grained sarcasm target identification. Our framework is thus empowered to adeptly unveil the intricate targets within multimodal sarcasm and mitigate the negative impact posed by potential noise inherently in LMMs. Experimental results demonstrate that our model far outperforms state-of-the-art MSTI methods, and markedly exhibits explainability in deciphering sarcasm as well.


Evaluating Decision Optimality of Autonomous Driving via Metamorphic Testing

arXiv.org Artificial Intelligence

Autonomous Driving System (ADS) testing is crucial in ADS development, with the current primary focus being on safety. However, the evaluation of non-safety-critical performance, particularly the ADS's ability to make optimal decisions and produce optimal paths for autonomous vehicles (AVs), is equally vital to ensure the intelligence and reduce risks of AVs. Currently, there is little work dedicated to assessing ADSs' optimal decision-making performance due to the lack of corresponding oracles and the difficulty in generating scenarios with non-optimal decisions. In this paper, we focus on evaluating the decision-making quality of an ADS and propose the first method for detecting non-optimal decision scenarios (NoDSs), where the ADS does not compute optimal paths for AVs. Firstly, to deal with the oracle problem, we propose a novel metamorphic relation (MR) aimed at exposing violations of optimal decisions. The MR identifies the property that the ADS should retain optimal decisions when the optimal path remains unaffected by non-invasive changes. Subsequently, we develop a new framework, Decictor, designed to generate NoDSs efficiently. Decictor comprises three main components: Non-invasive Mutation, MR Check, and Feedback. The Non-invasive Mutation ensures that the original optimal path in the mutated scenarios is not affected, while the MR Check is responsible for determining whether non-optimal decisions are made. To enhance the effectiveness of identifying NoDSs, we design a feedback metric that combines both spatial and temporal aspects of the AV's movement. We evaluate Decictor on Baidu Apollo, an open-source and production-grade ADS. The experimental results validate the effectiveness of Decictor in detecting non-optimal decisions of ADSs. Our work provides valuable and original insights into evaluating the non-safety-critical performance of ADSs.


A Unified Contrastive Transfer Framework with Propagation Structure for Boosting Low-Resource Rumor Detection

arXiv.org Artificial Intelligence

The truth is significantly hampered by massive rumors that spread along with breaking news or popular topics. Since there is sufficient corpus gathered from the same domain for model training, existing rumor detection algorithms show promising performance on yesterday's news. However, due to a lack of substantial training data and prior expert knowledge, they are poor at spotting rumors concerning unforeseen events, especially those propagated in different languages (i.e., low-resource regimes). In this paper, we propose a unified contrastive transfer framework to detect rumors by adapting the features learned from well-resourced rumor data to that of the low-resourced with only few-shot annotations. More specifically, we first represent rumor circulated on social media as an undirected topology for enhancing the interaction of user opinions, and then train a Multi-scale Graph Convolutional Network via a unified contrastive paradigm to mine effective clues simultaneously from post semantics and propagation structure. Our model explicitly breaks the barriers of the domain and/or language issues, via language alignment and a novel domain-adaptive contrastive learning mechanism. To well-generalize the representation learning using a small set of annotated target events, we reveal that rumor-indicative signal is closely correlated with the uniformity of the distribution of these events. We design a target-wise contrastive training mechanism with three event-level data augmentation strategies, capable of unifying the representations by distinguishing target events. Extensive experiments conducted on four low-resource datasets collected from real-world microblog platforms demonstrate that our framework achieves much better performance than state-of-the-art methods and exhibits a superior capacity for detecting rumors at early stages.