Goto

Collaborating Authors

 Cheng, Ching-Yu


Are Traditional Deep Learning Model Approaches as Effective as a Retinal-Specific Foundation Model for Ocular and Systemic Disease Detection?

arXiv.org Artificial Intelligence

Background: RETFound, a self-supervised, retina-specific foundation model (FM), showed potential in downstream applications. However, its comparative performance with traditional deep learning (DL) models remains incompletely understood. This study aimed to evaluate RETFound against three ImageNet-pretrained supervised DL models (ResNet50, ViT-base, SwinV2) in detecting ocular and systemic diseases. Methods: We fine-tuned/trained RETFound and three DL models on full datasets, 50%, 20%, and fixed sample sizes (400, 200, 100 images, with half comprising disease cases; for each DR severity class, 100 and 50 cases were used. Fine-tuned models were tested internally using the SEED (53,090 images) and APTOS-2019 (3,672 images) datasets and externally validated on population-based (BES, CIEMS, SP2, UKBB) and open-source datasets (ODIR-5k, PAPILA, GAMMA, IDRiD, MESSIDOR-2). Model performance was compared using area under the receiver operating characteristic curve (AUC) and Z-tests with Bonferroni correction (P<0.05/3). Interpretation: Traditional DL models are mostly comparable to RETFound for ocular disease detection with large datasets. However, RETFound is superior in systemic disease detection with smaller datasets. These findings offer valuable insights into the respective merits and limitation of traditional models and FMs.


Enhancing Community Vision Screening -- AI Driven Retinal Photography for Early Disease Detection and Patient Trust

arXiv.org Artificial Intelligence

Community vision screening plays a crucial role in identifying individuals with vision loss and preventing avoidable blindness, particularly in rural communities where access to eye care services is limited. Currently, there is a pressing need for a simple and efficient process to screen and refer individuals with significant eye disease-related vision loss to tertiary eye care centers for further care. An ideal solution should seamlessly and readily integrate with existing workflows, providing comprehensive initial screening results to service providers, thereby enabling precise patient referrals for timely treatment. This paper introduces the Enhancing Community Vision Screening (ECVS) solution, which addresses the aforementioned concerns with a novel and feasible solution based on simple, non-invasive retinal photography for the detection of pathology-based visual impairment. Our study employs four distinct deep learning models: RETinal photo Quality Assessment (RETQA), Pathology Visual Impairment detection (PVI), Eye Disease Diagnosis (EDD) and Visualization of Lesion Regions of the eye (VLR). We conducted experiments on over 10 datasets, totaling more than 80,000 fundus photos collected from various sources. The models integrated into ECVS achieved impressive AUC scores of 0.98 for RETQA, 0.95 for PVI, and 0.90 for EDD, along with a DICE coefficient of 0.48 for VLR. These results underscore the promising capabilities of ECVS as a straightforward and scalable method for community-based vision screening.


Towards Accountable AI-Assisted Eye Disease Diagnosis: Workflow Design, External Validation, and Continual Learning

arXiv.org Artificial Intelligence

Timely disease diagnosis is challenging due to increasing disease burdens and limited clinician availability. AI shows promise in diagnosis accuracy but faces real-world application issues due to insufficient validation in clinical workflows and diverse populations. This study addresses gaps in medical AI downstream accountability through a case study on age-related macular degeneration (AMD) diagnosis and severity classification. We designed and implemented an AI-assisted diagnostic workflow for AMD, comparing diagnostic performance with and without AI assistance among 24 clinicians from 12 institutions with real patient data sampled from the Age-Related Eye Disease Study (AREDS). Additionally, we demonstrated continual enhancement of an existing AI model by incorporating approximately 40,000 additional medical images (named AREDS2 dataset). The improved model was then systematically evaluated using both AREDS and AREDS2 test sets, as well as an external test set from Singapore. AI assistance markedly enhanced diagnostic accuracy and classification for 23 out of 24 clinicians, with the average F1-score increasing by 20% from 37.71 (Manual) to 45.52 (Manual + AI) (P-value < 0.0001), achieving an improvement of over 50% in some cases. In terms of efficiency, AI assistance reduced diagnostic times for 17 out of the 19 clinicians tracked, with time savings of up to 40%. Furthermore, a model equipped with continual learning showed robust performance across three independent datasets, recording a 29% increase in accuracy, and elevating the F1-score from 42 to 54 in the Singapore population.


Safety challenges of AI in medicine

arXiv.org Artificial Intelligence

Recent advancements in artificial intelligence (AI), particularly in deep learning and large language models (LLMs), have accelerated their integration into medicine. However, these developments have also raised public concerns about the safe application of AI. In healthcare, these concerns are especially pertinent, as the ethical and secure deployment of AI is crucial for protecting patient health and privacy. This review examines potential risks in AI practices that may compromise safety in medicine, including reduced performance across diverse populations, inconsistent operational stability, the need for high-quality data for effective model tuning, and the risk of data breaches during model development and deployment. For medical practitioners, patients, and researchers, LLMs provide a convenient way to interact with AI and data through language. However, their emergence has also amplified safety concerns, particularly due to issues like hallucination. Second part of this article explores safety issues specific to LLMs in medical contexts, including limitations in processing complex logic, challenges in aligning AI objectives with human values, the illusion of understanding, and concerns about diversity. Thoughtful development of safe AI could accelerate its adoption in real-world medical settings.


Improve Robustness of Eye Disease Detection by including Learnable Probabilistic Discrete Latent Variables into Machine Learning Models

arXiv.org Artificial Intelligence

Ocular diseases, ranging from diabetic retinopathy to glaucoma, present a significant public health challenge due to their prevalence and potential for causing vision impairment. Early and accurate diagnosis is crucial for effective treatment and management.In recent years, deep learning models have emerged as powerful tools for analysing medical images, including ocular imaging . However, challenges persist in model interpretability and uncertainty estimation, which are critical for clinical decision-making. This study introduces a novel application of GFlowOut, leveraging the probabilistic framework of Generative Flow Networks (GFlowNets) to learn the posterior distribution over dropout masks, for the classification and analysis of ocular diseases using eye fundus images. We develop a robust and generalizable method that utilizes GFlowOut integrated with ResNet18 and ViT models as backbone in identifying various ocular conditions. This study employs a unique set of dropout masks - none, random, bottomup, and topdown - to enhance model performance in analyzing ocular images. Our results demonstrate that the bottomup GFlowOut mask significantly improves accuracy, outperforming the traditional dropout approach.


Localizing Anatomical Landmarks in Ocular Images using Zoom-In Attentive Networks

arXiv.org Artificial Intelligence

Localizing anatomical landmarks are important tasks in medical image analysis. However, the landmarks to be localized often lack prominent visual features. Their locations are elusive and easily confused with the background, and thus precise localization highly depends on the context formed by their surrounding areas. In addition, the required precision is usually higher than segmentation and object detection tasks. Therefore, localization has its unique challenges different from segmentation or detection. In this paper, we propose a zoom-in attentive network (ZIAN) for anatomical landmark localization in ocular images. First, a coarse-to-fine, or "zoom-in" strategy is utilized to learn the contextualized features in different scales. Then, an attentive fusion module is adopted to aggregate multi-scale features, which consists of 1) a co-attention network with a multiple regions-of-interest (ROIs) scheme that learns complementary features from the multiple ROIs, 2) an attention-based fusion module which integrates the multi-ROIs features and non-ROI features. We evaluated ZIAN on two open challenge tasks, i.e., the fovea localization in fundus images and scleral spur localization in AS-OCT images. Experiments show that ZIAN achieves promising performances and outperforms state-of-the-art localization methods. The source code and trained models of ZIAN are available at https://github.com/leixiaofeng-astar/OMIA9-ZIAN.


The Three-Dimensional Structural Configuration of the Central Retinal Vessel Trunk and Branches as a Glaucoma Biomarker

arXiv.org Artificial Intelligence

Purpose: To assess whether the three-dimensional (3D) structural configuration of the central retinal vessel trunk and its branches (CRVT&B) could be used as a diagnostic marker for glaucoma. Method: We trained a deep learning network to automatically segment the CRVT&B from the B-scans of the optical coherence tomography (OCT) volume of the optic nerve head (ONH). Subsequently, two different approaches were used for glaucoma diagnosis using the structural configuration of the CRVT&B as extracted from the OCT volumes. In the first approach, we aimed to provide a diagnosis using only 3D CNN and the 3D structure of the CRVT&B. For the second approach, we projected the 3D structure of the CRVT&B orthographically onto three planes to obtain 2D images, and then a 2D CNN was used for diagnosis. The segmentation accuracy was evaluated using the Dice coefficient, whereas the diagnostic accuracy was assessed using the area under the receiver operating characteristic curves (AUC). The diagnostic performance of the CRVT&B was also compared with that of retinal nerve fiber layer (RNFL) thickness. Results: Our segmentation network was able to efficiently segment retinal blood vessels from OCT scans. On a test set, we achieved a Dice coefficient of 0.81\pm0.07. The 3D and 2D diagnostic networks were able to differentiate glaucoma from non-glaucoma subjects with accuracies of 82.7% and 83.3%, respectively. The corresponding AUCs for CRVT&B were 0.89 and 0.90, higher than those obtained with RNFL thickness alone. Conclusions: Our work demonstrated that the diagnostic power of the CRVT&B is superior to that of a gold-standard glaucoma parameter, i.e., RNFL thickness. Our work also suggested that the major retinal blood vessels form a skeleton -- the configuration of which may be representative of major ONH structural changes as typically observed with the development and progression of glaucoma.