Chen Dan
Optimal Analysis of Subset-Selection Based L_p Low-Rank Approximation
Chen Dan, Hong Wang, Hongyang Zhang, Yuchen Zhou, Pradeep K. Ravikumar
We complement our analysis with lower bounds; these bounds match our upper bounds up to constant 1 when p 2. At the core of our techniques is an application of Riesz-Thorin interpolation theorem from harmonic analysis, which might be of independent interest to other algorithmic designs and analysis more broadly. As a consequence of our analysis, we provide better approximation guarantees for several other algorithms with various time complexity. For example, to make the algorithm of column subset selection computationally efficient, we analyze a polynomial time bi-criteria algorithm which selects O(k log m) columns.
The Sample Complexity of Semi-Supervised Learning with Nonparametric Mixture Models
Chen Dan, Liu Leqi, Bryon Aragam, Pradeep K. Ravikumar, Eric P. Xing
We study the sample complexity of semi-supervised learning (SSL) and introduce new assumptions based on the mismatch between a mixture model learned from unlabeled data and the true mixture model induced by the (unknown) class conditional distributions. Under these assumptions, we establish an Ω(K log K) labeled sample complexity bound without imposing parametric assumptions, where K is the number of classes. Our results suggest that even in nonparametric settings it is possible to learn a near-optimal classifier using only a few labeled samples. Unlike previous theoretical work which focuses on binary classification, we consider general multiclass classification (K > 2), which requires solving a difficult permutation learning problem. This permutation defines a classifier whose classification error is controlled by the Wasserstein distance between mixing measures, and we provide finite-sample results characterizing the behaviour of the excess risk of this classifier. Finally, we describe three algorithms for computing these estimators based on a connection to bipartite graph matching, and perform experiments to illustrate the superiority of the MLE over the majority vote estimator.