Goto

Collaborating Authors

 Chen, Zhumin


A Universal Model Combining Differential Equations and Neural Networks for Ball Trajectory Prediction

arXiv.org Artificial Intelligence

This paper presents a data driven universal ball trajectory prediction method integrated with physics equations. Existing methods are designed for specific ball types and struggle to generalize. This challenge arises from three key factors. First, learning-based models require large datasets but suffer from accuracy drops in unseen scenarios. Second, physics-based models rely on complex formulas and detailed inputs, yet accurately obtaining ball states, such as spin, is often impractical. Third, integrating physical principles with neural networks to achieve high accuracy, fast inference, and strong generalization remains difficult. To address these issues, we propose an innovative approach that incorporates physics-based equations and neural networks. We first derive three generalized physical formulas. Then, using a neural network and observed trajectory points, we infer certain parameters while fitting the remaining ones. These formulas enable precise trajectory prediction with minimal training data: only a few dozen samples. Extensive experiments demonstrate our method superiority in generalization, real-time performance, and accuracy.


UIPE: Enhancing LLM Unlearning by Removing Knowledge Related to Forgetting Targets

arXiv.org Artificial Intelligence

Large Language Models (LLMs) inevitably acquire harmful information during training on massive datasets. LLM unlearning aims to eliminate the influence of such harmful information while maintaining the model's overall performance. Existing unlearning methods, represented by gradient ascent-based approaches, primarily focus on forgetting target data while overlooking the crucial impact of logically related knowledge on the effectiveness of unlearning. In this paper, through both theoretical and experimental analyses, we first demonstrate that a key reason for the suboptimal unlearning performance is that models can reconstruct the target content through reasoning with logically related knowledge. To address this issue, we propose Unlearning Improvement via Parameter Extrapolation (UIPE), a method that removes knowledge highly correlated with the forgetting targets. Experimental results show that UIPE significantly enhances the performance of various mainstream LLM unlearning methods on the TOFU benchmark.


A Cooperative Multi-Agent Framework for Zero-Shot Named Entity Recognition

arXiv.org Artificial Intelligence

Zero-shot named entity recognition (NER) aims to develop entity recognition systems from unannotated text corpora. This task presents substantial challenges due to minimal human intervention. Recent work has adapted large language models (LLMs) for zero-shot NER by crafting specialized prompt templates. It advances model self-learning abilities by incorporating self-annotated demonstrations. However, two important challenges persist: (i) Correlations between contexts surrounding entities are overlooked, leading to wrong type predictions or entity omissions. (ii) The indiscriminate use of task demonstrations, retrieved through shallow similarity-based strategies, severely misleads LLMs during inference. In this paper, we introduce the cooperative multi-agent system (CMAS), a novel framework for zero-shot NER that uses the collective intelligence of multiple agents to address the challenges outlined above. CMAS has four main agents: (i) a self-annotator, (ii) a type-related feature (TRF) extractor, (iii) a demonstration discriminator, and (iv) an overall predictor. To explicitly capture correlations between contexts surrounding entities, CMAS reformulates NER into two subtasks: recognizing named entities and identifying entity type-related features within the target sentence. To enable controllable utilization of demonstrations, a demonstration discriminator is established to incorporate the self-reflection mechanism, automatically evaluating helpfulness scores for the target sentence. Experimental results show that CMAS significantly improves zero-shot NER performance across six benchmarks, including both domain-specific and general-domain scenarios. Furthermore, CMAS demonstrates its effectiveness in few-shot settings and with various LLM backbones.


ASLoRA: Adaptive Sharing Low-Rank Adaptation Across Layers

arXiv.org Artificial Intelligence

As large language models (LLMs) grow in size, traditional full fine-tuning becomes increasingly impractical due to its high computational and storage costs. Although popular parameter-efficient fine-tuning methods, such as LoRA, have significantly reduced the number of tunable parameters, there is still room for further optimization. In this work, we propose ASLoRA, a cross-layer parameter-sharing strategy combining global sharing with partial adaptive sharing. Specifically, we share the low-rank matrix A across all layers and adaptively merge matrix B during training. This sharing mechanism not only mitigates overfitting effectively but also captures inter-layer dependencies, significantly enhancing the model's representational capability. We conduct extensive experiments on various NLP tasks, showing that ASLoRA outperforms LoRA while using less than 25% of the parameters, highlighting its flexibility and superior parameter efficiency. Furthermore, in-depth analyses of the adaptive sharing strategy confirm its significant advantages in enhancing both model flexibility and task adaptability.


Uncovering Overfitting in Large Language Model Editing

arXiv.org Artificial Intelligence

Knowledge editing has been proposed as an effective method for updating and correcting the internal knowledge of Large Language Models (LLMs). In this paper, we identify and investigate the phenomenon of Editing Overfit, where edited models assign disproportionately high probabilities to the edit target, hindering the generalization of new knowledge in complex scenarios. We attribute this issue to the current editing paradigm, which places excessive emphasis on the direct correspondence between the input prompt and the edit target for each edit sample. To further explore this issue, we introduce a new benchmark, EVOKE (EValuation of Editing Overfit in Knowledge Editing), along with finegrained evaluation metrics. Through comprehensive experiments and analysis, we demonstrate that Editing Overfit is prevalent in current editing methods and that common overfitting mitigation strategies are of limited effectiveness in knowledge editing. To overcome this, inspired by LLMs' knowledge recall mechanisms, we propose a new plug-and-play strategy called Learn to Inference (LTI), which introduce a Multi-stage Inference Constraint module to guide the edited models in recalling new knowledge similarly to how unedited LLMs leverage knowledge through in-context learning. Large Language Models (LLMs) have achieved remarkable success across various Natural Language Processing (NLP) tasks (Zhao et al., 2023), yet they often contain outdated or incorrect information, raising concerns about their reliability and factual accuracy. Knowledge Editing (Yao et al., 2023) has emerged as a promising solution to precisely update or correct a model's knowledge. Approaches to knowledge editing fall into two main categories: parameter-preserving methods, such as SERAC (Mitchell et al., 2022) and T-patcher (Huang et al.), which adjust outputs by storing external knowledge, and parameter-modifying methods, which directly alter the model's internal parameters. The latter includes fine-tuning-based methods like FT-L (Zhu et al., 2020), meta-learning approaches such as KE (De Cao et al., 2021) and MEND (Mitchell et al., 2021), and locate-then-edit methods like ROME (Meng et al., 2022a) and MEMIT (Meng et al., 2022b). Although existing methods have achieved promising results, their performance experiences a catastrophic decline when transferred to complex tasks involving reasoning (Yao et al., 2023). For instance, in the representative multi-hop reasoning task, after the LLM is updated with Steve Jobs as the founder of Microsoft, it can easily respond to straightforward questions like "Who is the founder of Microsoft?" with "Steve Jobs."


MELoRA: Mini-Ensemble Low-Rank Adapters for Parameter-Efficient Fine-Tuning

arXiv.org Artificial Intelligence

Parameter-efficient fine-tuning (PEFT) is a popular method for tailoring pre-trained large language models (LLMs), especially as the models' scale and the diversity of tasks increase. Low-rank adaptation (LoRA) is based on the idea that the adaptation process is intrinsically low-dimensional, i.e., significant model changes can be represented with relatively few parameters. However, decreasing the rank encounters challenges with generalization errors for specific tasks when compared to full-parameter fine-tuning. We present MELoRA, a mini-ensemble low-rank adapters that uses fewer trainable parameters while maintaining a higher rank, thereby offering improved performance potential. The core idea is to freeze original pretrained weights and train a group of mini LoRAs with only a small number of parameters. This can capture a significant degree of diversity among mini LoRAs, thus promoting better generalization ability. We conduct a theoretical analysis and empirical studies on various NLP tasks. Our experimental results show that, compared to LoRA, MELoRA achieves better performance with 8 times fewer trainable parameters on natural language understanding tasks and 36 times fewer trainable parameters on instruction following tasks, which demonstrates the effectiveness of MELoRA.


Generate-then-Ground in Retrieval-Augmented Generation for Multi-hop Question Answering

arXiv.org Artificial Intelligence

Multi-Hop Question Answering (MHQA) tasks present a significant challenge for large language models (LLMs) due to the intensive knowledge required. Current solutions, like Retrieval-Augmented Generation, typically retrieve potential documents from an external corpus to read an answer. However, the performance of this retrieve-then-read paradigm is constrained by the retriever and the inevitable noise in the retrieved documents. To mitigate these challenges, we introduce a novel generate-then-ground (GenGround) framework, synergizing the parametric knowledge of LLMs and external documents to solve a multi-hop question. GenGround empowers LLMs to alternate two phases until the final answer is derived: (1) formulate a simpler, single-hop question and directly generate the answer; (2) ground the question-answer pair in retrieved documents, amending any wrong predictions in the answer. We also propose an instructional grounding distillation method to generalize our method into smaller models. Extensive experiments conducted on four datasets illustrate the superiority of our method.


MEFT: Memory-Efficient Fine-Tuning through Sparse Adapter

arXiv.org Artificial Intelligence

Parameter-Efficient Fine-tuning (PEFT) facilitates the fine-tuning of Large Language Models (LLMs) under limited resources. However, the fine-tuning performance with PEFT on complex, knowledge-intensive tasks is limited due to the constrained model capacity, which originates from the limited number of additional trainable parameters. To overcome this limitation, we introduce a novel mechanism that fine-tunes LLMs with adapters of larger size yet memory-efficient. This is achieved by leveraging the inherent activation sparsity in the Feed-Forward Networks (FFNs) of LLMs and utilizing the larger capacity of Central Processing Unit (CPU) memory compared to Graphics Processing Unit (GPU). We store and update the parameters of larger adapters on the CPU. Moreover, we employ a Mixture of Experts (MoE)-like architecture to mitigate unnecessary CPU computations and reduce the communication volume between the GPU and CPU. This is particularly beneficial over the limited bandwidth of PCI Express (PCIe). Our method can achieve fine-tuning results comparable to those obtained with larger memory capacities, even when operating under more limited resources such as a 24GB memory single GPU setup, with acceptable loss in training efficiency. Our codes are available at https://github.com/CURRENTF/MEFT.


Autonomous Workflow for Multimodal Fine-Grained Training Assistants Towards Mixed Reality

arXiv.org Artificial Intelligence

Autonomous artificial intelligence (AI) agents have emerged as promising protocols for automatically understanding the language-based environment, particularly with the exponential development of large language models (LLMs). However, a fine-grained, comprehensive understanding of multimodal environments remains under-explored. This work designs an autonomous workflow tailored for integrating AI agents seamlessly into extended reality (XR) applications for fine-grained training. We present a demonstration of a multimodal fine-grained training assistant for LEGO brick assembly in a pilot XR environment. Specifically, we design a cerebral language agent that integrates LLM with memory, planning, and interaction with XR tools and a vision-language agent, enabling agents to decide their actions based on past experiences. Furthermore, we introduce LEGO-MRTA, a multimodal fine-grained assembly dialogue dataset synthesized automatically in the workflow served by a commercial LLM. This dataset comprises multimodal instruction manuals, conversations, XR responses, and vision question answering. Last, we present several prevailing open-resource LLMs as benchmarks, assessing their performance with and without fine-tuning on the proposed dataset. We anticipate that the broader impact of this workflow will advance the development of smarter assistants for seamless user interaction in XR environments, fostering research in both AI and HCI communities.


Chain of Tools: Large Language Model is an Automatic Multi-tool Learner

arXiv.org Artificial Intelligence

Augmenting large language models (LLMs) with external tools has emerged as a promising approach to extend their utility, empowering them to solve practical tasks. Existing work typically empowers LLMs as tool users with a manually designed workflow, where the LLM plans a series of tools in a step-by-step manner, and sequentially executes each tool to obtain intermediate results until deriving the final answer. However, they suffer from two challenges in realistic scenarios: (1) The handcrafted control flow is often ad-hoc and constraints the LLM to local planning; (2) The LLM is instructed to use only manually demonstrated tools or well-trained Python functions, which limits its generalization to new tools. In this work, we first propose Automatic Tool Chain (ATC), a framework that enables the LLM to act as a multi-tool user, which directly utilizes a chain of tools through programming. To scale up the scope of the tools, we next propose a black-box probing method. This further empowers the LLM as a tool learner that can actively discover and document tool usages, teaching themselves to properly master new tools. For a comprehensive evaluation, we build a challenging benchmark named ToolFlow, which diverges from previous benchmarks by its long-term planning scenarios and complex toolset. Experiments on both existing datasets and ToolFlow illustrate the superiority of our framework.