Chen, Zhehuai
Audio Large Language Models Can Be Descriptive Speech Quality Evaluators
Chen, Chen, Hu, Yuchen, Wang, Siyin, Wang, Helin, Chen, Zhehuai, Zhang, Chao, Yang, Chao-Han Huck, Chng, Eng Siong
An ideal multimodal agent should be aware of the quality of its input modalities. Recent advances have enabled large language models (LLMs) to incorporate auditory systems for handling various speech-related tasks. However, most audio LLMs remain unaware of the quality of the speech they process. This limitation arises because speech quality evaluation is typically excluded from multi-task training due to the lack of suitable datasets. To address this, we introduce the first natural language-based speech evaluation corpus, generated from authentic human ratings. In addition to the overall Mean Opinion Score (MOS), this corpus offers detailed analysis across multiple dimensions and identifies causes of quality degradation. It also enables descriptive comparisons between two speech samples (A/B tests) with human-like judgment. Leveraging this corpus, we propose an alignment approach with LLM distillation (ALLD) to guide the audio LLM in extracting relevant information from raw speech and generating meaningful responses. Experimental results demonstrate that ALLD outperforms the previous state-of-the-art regression model in MOS prediction, with a mean square error of 0.17 and an A/B test accuracy of 98.6%. Additionally, the generated responses achieve BLEU scores of 25.8 and 30.2 on two tasks, surpassing the capabilities of task-specific models. This work advances the comprehensive perception of speech signals by audio LLMs, contributing to the development of real-world auditory and sensory intelligent agents.
Detecting the Undetectable: Assessing the Efficacy of Current Spoof Detection Methods Against Seamless Speech Edits
Huang, Sung-Feng, Kuo, Heng-Cheng, Chen, Zhehuai, Yang, Xuesong, Yang, Chao-Han Huck, Tsao, Yu, Wang, Yu-Chiang Frank, Lee, Hung-yi, Fu, Szu-Wei
Neural speech editing advancements have raised concerns about their misuse in spoofing attacks. Traditional partially edited speech corpora primarily focus on cut-and-paste edits, which, while maintaining speaker consistency, often introduce detectable discontinuities. Recent methods, like A\textsuperscript{3}T and Voicebox, improve transitions by leveraging contextual information. To foster spoofing detection research, we introduce the Speech INfilling Edit (SINE) dataset, created with Voicebox. We detailed the process of re-implementing Voicebox training and dataset creation. Subjective evaluations confirm that speech edited using this novel technique is more challenging to detect than conventional cut-and-paste methods. Despite human difficulty, experimental results demonstrate that self-supervised-based detectors can achieve remarkable performance in detection, localization, and generalization across different edit methods. The dataset and related models will be made publicly available.
NeKo: Toward Post Recognition Generative Correction Large Language Models with Task-Oriented Experts
Lin, Yen-Ting, Yang, Chao-Han Huck, Chen, Zhehuai, Zelasko, Piotr, Yang, Xuesong, Chen, Zih-Ching, Puvvada, Krishna C, Fu, Szu-Wei, Hu, Ke, Chiu, Jun Wei, Balam, Jagadeesh, Ginsburg, Boris, Wang, Yu-Chiang Frank
Construction of a general-purpose post-recognition error corrector poses a crucial question: how can we most effectively train a model on a large mixture of domain datasets? The answer would lie in learning dataset-specific features and digesting their knowledge in a single model. Previous methods achieve this by having separate correction language models, resulting in a significant increase in parameters. In this work, we present Mixture-of-Experts as a solution, highlighting that MoEs are much more than a scalability tool. We propose a Multi-Task Correction MoE, where we train the experts to become an ``expert'' of speech-to-text, language-to-text and vision-to-text datasets by learning to route each dataset's tokens to its mapped expert. Experiments on the Open ASR Leaderboard show that we explore a new state-of-the-art performance by achieving an average relative $5.0$% WER reduction and substantial improvements in BLEU scores for speech and translation tasks. On zero-shot evaluation, NeKo outperforms GPT-3.5 and Claude-Opus with $15.5$% to $27.6$% relative WER reduction in the Hyporadise benchmark. NeKo performs competitively on grammar and post-OCR correction as a multi-task model.
Dynamic-SUPERB Phase-2: A Collaboratively Expanding Benchmark for Measuring the Capabilities of Spoken Language Models with 180 Tasks
Huang, Chien-yu, Chen, Wei-Chih, Yang, Shu-wen, Liu, Andy T., Li, Chen-An, Lin, Yu-Xiang, Tseng, Wei-Cheng, Diwan, Anuj, Shih, Yi-Jen, Shi, Jiatong, Chen, William, Chen, Xuanjun, Hsiao, Chi-Yuan, Peng, Puyuan, Wang, Shih-Heng, Kuan, Chun-Yi, Lu, Ke-Han, Chang, Kai-Wei, Yang, Chih-Kai, Ritter-Gutierrez, Fabian, Chuang, Ming To, Huang, Kuan-Po, Arora, Siddhant, Lin, You-Kuan, Yeo, Eunjung, Chang, Kalvin, Chien, Chung-Ming, Choi, Kwanghee, Hsieh, Cheng-Hsiu, Lin, Yi-Cheng, Yu, Chee-En, Chiu, I-Hsiang, Guimarรฃes, Heitor R., Han, Jionghao, Lin, Tzu-Quan, Lin, Tzu-Yuan, Chang, Homu, Chang, Ting-Wu, Chen, Chun Wei, Chen, Shou-Jen, Chen, Yu-Hua, Cheng, Hsi-Chun, Dhawan, Kunal, Fang, Jia-Lin, Fang, Shi-Xin, Chiang, Kuan-Yu Fang, Fu, Chi An, Hsiao, Hsien-Fu, Hsu, Ching Yu, Huang, Shao-Syuan, Wei, Lee Chen, Lin, Hsi-Che, Lin, Hsuan-Hao, Lin, Hsuan-Ting, Lin, Jian-Ren, Liu, Ting-Chun, Lu, Li-Chun, Pai, Tsung-Min, Pasad, Ankita, Kuan, Shih-Yun Shan, Shon, Suwon, Tang, Yuxun, Tsai, Yun-Shao, Wei, Jui-Chiang, Wei, Tzu-Chieh, Wu, Chengxi, Wu, Dien-Ruei, Yang, Chao-Han Huck, Yang, Chieh-Chi, Yip, Jia Qi, Yuan, Shao-Xiang, Noroozi, Vahid, Chen, Zhehuai, Wu, Haibin, Livescu, Karen, Harwath, David, Watanabe, Shinji, Lee, Hung-yi
Multimodal foundation models, such as Gemini and ChatGPT, have revolutionized human-machine interactions by seamlessly integrating various forms of data. Developing a universal spoken language model that comprehends a wide range of natural language instructions is critical for bridging communication gaps and facilitating more intuitive interactions. However, the absence of a comprehensive evaluation benchmark poses a significant challenge. We present Dynamic-SUPERB Phase-2, an open and evolving benchmark for the comprehensive evaluation of instruction-based universal speech models. Building upon the first generation, this second version incorporates 125 new tasks contributed collaboratively by the global research community, expanding the benchmark to a total of 180 tasks, making it the largest benchmark for speech and audio evaluation. While the first generation of Dynamic-SUPERB was limited to classification tasks, Dynamic-SUPERB Phase-2 broadens its evaluation capabilities by introducing a wide array of novel and diverse tasks, including regression and sequence generation, across speech, music, and environmental audio. Evaluation results indicate that none of the models performed well universally. SALMONN-13B excelled in English ASR, while WavLLM demonstrated high accuracy in emotion recognition, but current models still require further innovations to handle a broader range of tasks. We will soon open-source all task data and the evaluation pipeline.
Anticipating Future with Large Language Model for Simultaneous Machine Translation
Ouyang, Siqi, Hrinchuk, Oleksii, Chen, Zhehuai, Lavrukhin, Vitaly, Balam, Jagadeesh, Li, Lei, Ginsburg, Boris
Simultaneous machine translation (SMT) takes streaming input utterances and incrementally produces target text. Existing SMT methods only use the partial utterance that has already arrived at the input and the generated hypothesis. Motivated by human interpreters' technique to forecast future words before hearing them, we propose $\textbf{T}$ranslation by $\textbf{A}$nticipating $\textbf{F}$uture (TAF), a method to improve translation quality while retraining low latency. Its core idea is to use a large language model (LLM) to predict future source words and opportunistically translate without introducing too much risk. We evaluate our TAF and multiple baselines of SMT on four language directions. Experiments show that TAF achieves the best translation quality-latency trade-off and outperforms the baselines by up to 5 BLEU points at the same latency (three words).
VoiceTextBlender: Augmenting Large Language Models with Speech Capabilities via Single-Stage Joint Speech-Text Supervised Fine-Tuning
Peng, Yifan, Puvvada, Krishna C., Chen, Zhehuai, Zelasko, Piotr, Huang, He, Dhawan, Kunal, Hu, Ke, Watanabe, Shinji, Balam, Jagadeesh, Ginsburg, Boris
Recent studies have augmented large language models (LLMs) with speech capabilities, leading to the development of speech language models (SpeechLMs). Earlier SpeechLMs focused on single-turn speech-based question answering (QA), where user input comprised a speech context and a text question. More recent studies have extended this to multi-turn conversations, though they often require complex, multi-stage supervised fine-tuning (SFT) with diverse data. Another critical challenge with SpeechLMs is catastrophic forgetting-where models optimized for speech tasks suffer significant degradation in text-only performance. To mitigate these issues, we propose a novel single-stage joint speech-text SFT approach on the low-rank adaptation (LoRA) of the LLM backbone. Our joint SFT combines text-only SFT data with three types of speech-related data: speech recognition and translation, speech-based QA, and mixed-modal SFT. Compared to previous SpeechLMs with 7B or 13B parameters, our 3B model demonstrates superior performance across various speech benchmarks while preserving the original capabilities on text-only tasks. Furthermore, our model shows emergent abilities of effectively handling previously unseen prompts and tasks, including multi-turn, mixed-modal inputs.
Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data
Lu, Ke-Han, Chen, Zhehuai, Fu, Szu-Wei, Yang, Chao-Han Huck, Balam, Jagadeesh, Ginsburg, Boris, Wang, Yu-Chiang Frank, Lee, Hung-yi
Recent end-to-end speech language models (SLMs) have expanded upon the capabilities of large language models (LLMs) by incorporating pre-trained speech models. However, these SLMs often undergo extensive speech instruction-tuning to bridge the gap between speech and text modalities. This requires significant annotation efforts and risks catastrophic forgetting of the original language capabilities. In this work, we present a simple yet effective automatic process for creating speech-text pair data that carefully injects speech paralinguistic understanding abilities into SLMs while preserving the inherent language capabilities of the text-based LLM. Our model demonstrates general capabilities for speech-related tasks without the need for speech instruction-tuning data, achieving impressive performance on Dynamic-SUPERB and AIR-Bench-Chat benchmarks. Furthermore, our model exhibits the ability to follow complex instructions derived from LLMs, such as specific output formatting and chain-of-thought reasoning. Our approach not only enhances the versatility and effectiveness of SLMs but also reduces reliance on extensive annotated datasets, paving the way for more efficient and capable speech understanding systems.
EMMeTT: Efficient Multimodal Machine Translation Training
ลปelasko, Piotr, Chen, Zhehuai, Wang, Mengru, Galvez, Daniel, Hrinchuk, Oleksii, Ding, Shuoyang, Hu, Ke, Balam, Jagadeesh, Lavrukhin, Vitaly, Ginsburg, Boris
A rising interest in the modality extension of foundation language models warrants discussion on the most effective, and efficient, multimodal training approach. This work focuses on neural machine translation (NMT) and proposes a joint multimodal training regime of Speech-LLM to include automatic speech translation (AST). We investigate two different foundation model architectures, decoder-only GPT and encoder-decoder T5, extended with Canary-1B's speech encoder. To handle joint multimodal training, we propose a novel training framework called EMMeTT. EMMeTT improves training efficiency with the following: balanced sampling across languages, datasets, and modalities; efficient sequential data iteration; and a novel 2D bucketing scheme for multimodal data, complemented by a batch size optimizer (OOMptimizer). We show that a multimodal training consistently helps with both architectures. Moreover, SALM-T5 trained with EMMeTT retains the original NMT capability while outperforming AST baselines on four-language subsets of FLORES and FLEURS. The resultant Multimodal Translation Model produces strong text and speech translation results at the same time.
Less is More: Accurate Speech Recognition & Translation without Web-Scale Data
Puvvada, Krishna C., ลปelasko, Piotr, Huang, He, Hrinchuk, Oleksii, Koluguri, Nithin Rao, Dhawan, Kunal, Majumdar, Somshubra, Rastorgueva, Elena, Chen, Zhehuai, Lavrukhin, Vitaly, Balam, Jagadeesh, Ginsburg, Boris
It was observed in [6] that such long utterances harm the model convergence. We also note that this Recent advances in speech recognition and translation rely on approach may lead to significant padding in mini-batches, resulting hundreds of thousands of hours of Internet speech data. We argue in wasted computation on non-informative frames. We that state-of-the art accuracy can be reached without relying on present an alternative approach to sampling and batching that web-scale data. Canary - multilingual ASR and speech translation allows us to iterate through data twice as fast, while balancing model, outperforms current state-of-the-art models - Whisper, different languages and data sources better. We further accelerate OWSM, and Seamless-M4T on English, French, Spanish, and the training and inference by adopting a FastConformer [7] architecture German languages, while being trained on an order of magnitude and initializing the encoder from a ASR only pretrained less data than these models. Three key factors enables such dataefficient checkpoint.
DeSTA: Enhancing Speech Language Models through Descriptive Speech-Text Alignment
Lu, Ke-Han, Chen, Zhehuai, Fu, Szu-Wei, Huang, He, Ginsburg, Boris, Wang, Yu-Chiang Frank, Lee, Hung-yi
Recent speech language models (SLMs) typically incorporate pre-trained speech models to extend the capabilities from large language models (LLMs). In this paper, we propose a Descriptive Speech-Text Alignment approach that leverages speech captioning to bridge the gap between speech and text modalities, enabling SLMs to interpret and generate comprehensive natural language descriptions, thereby facilitating the capability to understand both linguistic and non-linguistic features in speech. Enhanced with the proposed approach, our model demonstrates superior performance on the Dynamic-SUPERB benchmark, particularly in generalizing to unseen tasks. Moreover, we discover that the aligned model exhibits a zero-shot instruction-following capability without explicit speech instruction tuning. These findings highlight the potential to reshape instruction-following SLMs by incorporating rich, descriptive speech captions.