Goto

Collaborating Authors

 Chen, Zhao


Interpretable Deep Regression Models with Interval-Censored Failure Time Data

arXiv.org Machine Learning

Deep neural networks (DNNs) have become powerful tools for modeling complex data structures through sequentially integrating simple functions in each hidden layer. In survival analysis, recent advances of DNNs primarily focus on enhancing model capabilities, especially in exploring nonlinear covariate effects under right censoring. However, deep learning methods for interval-censored data, where the unobservable failure time is only known to lie in an interval, remain underexplored and limited to specific data type or model. This work proposes a general regression framework for interval-censored data with a broad class of partially linear transformation models, where key covariate effects are modeled parametrically while nonlinear effects of nuisance multi-modal covariates are approximated via DNNs, balancing interpretability and flexibility. We employ sieve maximum likelihood estimation by leveraging monotone splines to approximate the cumulative baseline hazard function. To ensure reliable and tractable estimation, we develop an EM algorithm incorporating stochastic gradient descent. We establish the asymptotic properties of parameter estimators and show that the DNN estimator achieves minimax-optimal convergence. Extensive simulations demonstrate superior estimation and prediction accuracy over state-of-the-art methods. Applying our method to the Alzheimer's Disease Neuroimaging Initiative dataset yields novel insights and improved predictive performance compared to traditional approaches.


Generative Data Mining with Longtail-Guided Diffusion

arXiv.org Artificial Intelligence

It is difficult to anticipate the myriad challenges that a predictive model will encounter once deployed. Common practice entails a reactive, cyclical approach: model deployment, data mining, and retraining. We instead develop a proactive longtail discovery process by imagining additional data during training. In particular, we develop general model-based longtail signals, including a differentiable, single forward pass formulation of epistemic uncertainty that does not impact model parameters or predictive performance but can flag rare or hard inputs. We leverage these signals as guidance to generate additional training data from a latent diffusion model in a process we call Longtail Guidance (LTG). Crucially, we can perform LTG without retraining the diffusion model or the predictive model, and we do not need to expose the predictive model to intermediate diffusion states. Data generated by LTG exhibit semantically meaningful variation, yield significant generalization improvements on image classification benchmarks, and can be analyzed to proactively discover, explain, and address conceptual gaps in a predictive model.


MRAG: A Modular Retrieval Framework for Time-Sensitive Question Answering

arXiv.org Artificial Intelligence

Understanding temporal relations and answering time-sensitive questions is crucial yet a challenging task for question-answering systems powered by large language models (LLMs). Existing approaches either update the parametric knowledge of LLMs with new facts, which is resource-intensive and often impractical, or integrate LLMs with external knowledge retrieval (i.e., retrieval-augmented generation). However, off-the-shelf retrievers often struggle to identify relevant documents that require intensive temporal reasoning. To systematically study time-sensitive question answering, we introduce the TempRAGEval benchmark, which repurposes existing datasets by incorporating temporal perturbations and gold evidence labels. As anticipated, all existing retrieval methods struggle with these temporal reasoning-intensive questions. We further propose Modular Retrieval (MRAG), a trainless framework that includes three modules: (1) Question Processing that decomposes question into a main content and a temporal constraint; (2) Retrieval and Summarization that retrieves evidence and uses LLMs to summarize according to the main content; (3) Semantic-Temporal Hybrid Ranking that scores each evidence summarization based on both semantic and temporal relevance. On TempRAGEval, MRAG significantly outperforms baseline retrievers in retrieval performance, leading to further improvements in final answer accuracy.


SHIFT3D: Synthesizing Hard Inputs For Tricking 3D Detectors

arXiv.org Artificial Intelligence

We present SHIFT3D, a differentiable pipeline for generating 3D shapes that are structurally plausible yet challenging to 3D object detectors. In safety-critical applications like autonomous driving, discovering such novel challenging objects can offer insight into unknown vulnerabilities of 3D detectors. By representing objects with a signed distanced function (SDF), we show that gradient error signals allow us to smoothly deform the shape or pose of a 3D object in order to confuse a downstream 3D detector. Importantly, the objects generated by SHIFT3D physically differ from the baseline object yet retain a semantically recognizable shape. Our approach provides interpretable failure modes for modern 3D object detectors, and can aid in preemptive discovery of potential safety risks within 3D perception systems before these risks become critical failures.


Structural Inference of Networked Dynamical Systems with Universal Differential Equations

arXiv.org Artificial Intelligence

Networked dynamical systems are common throughout science in engineering; e.g., biological networks, reaction networks, power systems, and the like. For many such systems, nonlinearity drives populations of identical (or near-identical) units to exhibit a wide range of nontrivial behaviors, such as the emergence of coherent structures (e.g., waves and patterns) or otherwise notable dynamics (e.g., synchrony and chaos). In this work, we seek to infer (i) the intrinsic physics of a base unit of a population, (ii) the underlying graphical structure shared between units, and (iii) the coupling physics of a given networked dynamical system given observations of nodal states. These tasks are formulated around the notion of the Universal Differential Equation, whereby unknown dynamical systems can be approximated with neural networks, mathematical terms known a priori (albeit with unknown parameterizations), or combinations of the two. We demonstrate the value of these inference tasks by investigating not only future state predictions but also the inference of system behavior on varied network topologies. The effectiveness and utility of these methods is shown with their application to canonical networked nonlinear coupled oscillators.


Deep learning of physical laws from scarce data

arXiv.org Machine Learning

Harnessing data to discover the underlying governing laws or equations that describe the behavior of complex physical systems can significantly advance our modeling, simulation and understanding of such systems in various science and engineering disciplines. Recent advances in sparse identification show encouraging success in distilling closed-form governing equations from data for a wide range of nonlinear dynamical systems. However, the fundamental bottleneck of this approach lies in the robustness and scalability with respect to data scarcity and noise. This work introduces a novel physics-informed deep learning framework to discover governing partial differential equations (PDEs) from scarce and noisy data for nonlinear spatiotemporal systems. In particular, this approach seamlessly integrates the strengths of deep neural networks for rich representation learning, automatic differentiation and sparse regression to approximate the solution of system variables, compute essential derivatives, as well as identify the key derivative terms and parameters that form the structure and explicit expression of the PDEs. The efficacy and robustness of this method are demonstrated on discovering a variety of PDE systems with different levels of data scarcity and noise. The resulting computational framework shows the potential for closed-form model discovery in practical applications where large and accurate datasets are intractable to capture.


Decentralized Computation Offloading for Multi-User Mobile Edge Computing: A Deep Reinforcement Learning Approach

arXiv.org Machine Learning

Mobile edge computing (MEC) emerges recently as a promising solution to relieve resource-limited mobile devices from computation-intensive tasks, which enables devices to offload workloads to nearby MEC servers and improve the quality of computation experience. Nevertheless, by considering an MEC system consisting of multiple mobile users with stochastic task arrivals and wireless channels in this paper, the design of computation offloading policies is challenging to minimize the long-term average computation cost in terms of power consumption and buffering delay. A deep reinforcement learning (DRL) based decentralized dynamic computation offloading strategy is investigated to build a scalable MEC system with limited feedback. Specifically, a continuous action space based DRL approach named deep deterministic policy gradient (DDPG) is adopted to learn efficient computation offloading policies independently at each mobile user. Thus, powers of both local execution and task offloading can be adaptively allocated by the learned policies from each user's local observation of the MEC system. Numerical results are illustrated to demonstrate that efficient policies can be learned at each user, and performance of the proposed DDPG based decentralized strategy outperforms the conventional deep Q-network (DQN) based discrete power control strategy and some other greedy strategies with reduced computation cost. Besides, the power-delay tradeoff is also analyzed for both the DDPG based and DQN based strategies.


Gradient Adversarial Training of Neural Networks

arXiv.org Machine Learning

We propose gradient adversarial training, an auxiliary deep learning framework applicable to different machine learning problems. In gradient adversarial training, we leverage a prior belief that in many contexts, simultaneous gradient updates should be statistically indistinguishable from each other. We enforce this consistency using an auxiliary network that classifies the origin of the gradient tensor, and the main network serves as an adversary to the auxiliary network in addition to performing standard task-based training. We demonstrate gradient adversarial training for three different scenarios: (1) as a defense to adversarial examples we classify gradient tensors and tune them to be agnostic to the class of their corresponding example, (2) for knowledge distillation, we do binary classification of gradient tensors derived from the student or teacher network and tune the student gradient tensor to mimic the teacher's gradient tensor; and (3) for multi-task learning we classify the gradient tensors derived from different task loss functions and tune them to be statistically indistinguishable. For each of the three scenarios we show the potential of gradient adversarial training procedure. Specifically, gradient adversarial training increases the robustness of a network to adversarial attacks, is able to better distill the knowledge from a teacher network to a student network compared to soft targets, and boosts multi-task learning by aligning the gradient tensors derived from the task specific loss functions. Overall, our experiments demonstrate that gradient tensors contain latent information about whatever tasks are being trained, and can support diverse machine learning problems when intelligently guided through adversarialization using a auxiliary network.