Chen, Yong
Enabling Inclusive Systematic Reviews: Incorporating Preprint Articles with Large Language Model-Driven Evaluations
Yang, Rui, Tong, Jiayi, Wang, Haoyuan, Huang, Hui, Hu, Ziyang, Li, Peiyu, Liu, Nan, Lindsell, Christopher J., Pencina, Michael J., Chen, Yong, Hong, Chuan
Background. Systematic reviews in comparative effectiveness research require timely evidence synthesis. Preprints accelerate knowledge dissemination but vary in quality, posing challenges for systematic reviews. Methods. We propose AutoConfidence (automated confidence assessment), an advanced framework for predicting preprint publication, which reduces reliance on manual curation and expands the range of predictors, including three key advancements: (1) automated data extraction using natural language processing techniques, (2) semantic embeddings of titles and abstracts, and (3) large language model (LLM)-driven evaluation scores. Additionally, we employed two prediction models: a random forest classifier for binary outcome and a survival cure model that predicts both binary outcome and publication risk over time. Results. The random forest classifier achieved AUROC 0.692 with LLM-driven scores, improving to 0.733 with semantic embeddings and 0.747 with article usage metrics. The survival cure model reached AUROC 0.716 with LLM-driven scores, improving to 0.731 with semantic embeddings. For publication risk prediction, it achieved a concordance index of 0.658, increasing to 0.667 with semantic embeddings. Conclusion. Our study advances the framework for preprint publication prediction through automated data extraction and multiple feature integration. By combining semantic embeddings with LLM-driven evaluations, AutoConfidence enhances predictive performance while reducing manual annotation burden. The framework has the potential to facilitate systematic incorporation of preprint articles in evidence-based medicine, supporting researchers in more effective evaluation and utilization of preprint resources.
Learn then Decide: A Learning Approach for Designing Data Marketplaces
Gao, Yingqi, Zhou, Jin, Zhou, Hua, Chen, Yong, Dai, Xiaowu
As data marketplaces become increasingly central to the digital economy, it is crucial to design efficient pricing mechanisms that optimize revenue while ensuring fair and adaptive pricing. We introduce the Maximum Auction-to-Posted Price (MAPP) mechanism, a novel two-stage approach that first estimates the bidders' value distribution through auctions and then determines the optimal posted price based on the learned distribution. We establish that MAPP is individually rational and incentive-compatible, ensuring truthful bidding while balancing revenue maximization with minimal price discrimination. MAPP achieves a regret of $O_p(n^{-1})$ when incorporating historical bid data, where $n$ is the number of bids in the current round. It outperforms existing methods while imposing weaker distributional assumptions. For sequential dataset sales over $T$ rounds, we propose an online MAPP mechanism that dynamically adjusts pricing across datasets with varying value distributions. Our approach achieves no-regret learning, with the average cumulative regret converging at a rate of $O_p(T^{-1/2}(\log T)^2)$. We validate the effectiveness of MAPP through simulations and real-world data from the FCC AWS-3 spectrum auction.
YuE: Scaling Open Foundation Models for Long-Form Music Generation
Yuan, Ruibin, Lin, Hanfeng, Guo, Shuyue, Zhang, Ge, Pan, Jiahao, Zang, Yongyi, Liu, Haohe, Liang, Yiming, Ma, Wenye, Du, Xingjian, Du, Xinrun, Ye, Zhen, Zheng, Tianyu, Ma, Yinghao, Liu, Minghao, Tian, Zeyue, Zhou, Ziya, Xue, Liumeng, Qu, Xingwei, Li, Yizhi, Wu, Shangda, Shen, Tianhao, Ma, Ziyang, Zhan, Jun, Wang, Chunhui, Wang, Yatian, Chi, Xiaowei, Zhang, Xinyue, Yang, Zhenzhu, Wang, Xiangzhou, Liu, Shansong, Mei, Lingrui, Li, Peng, Wang, Junjie, Yu, Jianwei, Pang, Guojian, Li, Xu, Wang, Zihao, Zhou, Xiaohuan, Yu, Lijun, Benetos, Emmanouil, Chen, Yong, Lin, Chenghua, Chen, Xie, Xia, Gus, Zhang, Zhaoxiang, Zhang, Chao, Chen, Wenhu, Zhou, Xinyu, Qiu, Xipeng, Dannenberg, Roger, Liu, Jiaheng, Yang, Jian, Huang, Wenhao, Xue, Wei, Tan, Xu, Guo, Yike
We tackle the task of long-form music generation--particularly the challenging \textbf{lyrics-to-song} problem--by introducing YuE, a family of open foundation models based on the LLaMA2 architecture. Specifically, YuE scales to trillions of tokens and generates up to five minutes of music while maintaining lyrical alignment, coherent musical structure, and engaging vocal melodies with appropriate accompaniment. It achieves this through (1) track-decoupled next-token prediction to overcome dense mixture signals, (2) structural progressive conditioning for long-context lyrical alignment, and (3) a multitask, multiphase pre-training recipe to converge and generalize. In addition, we redesign the in-context learning technique for music generation, enabling versatile style transfer (e.g., converting Japanese city pop into an English rap while preserving the original accompaniment) and bidirectional generation. Through extensive evaluation, we demonstrate that YuE matches or even surpasses some of the proprietary systems in musicality and vocal agility. In addition, fine-tuning YuE enables additional controls and enhanced support for tail languages. Furthermore, beyond generation, we show that YuE's learned representations can perform well on music understanding tasks, where the results of YuE match or exceed state-of-the-art methods on the MARBLE benchmark. Keywords: lyrics2song, song generation, long-form, foundation model, music generation
Improving the Transferability of Adversarial Examples by Inverse Knowledge Distillation
Wu, Wenyuan, Liu, Zheng, Chen, Yong, Su, Chao, Peng, Dezhong, Wang, Xu
In recent years, the rapid development of deep neural networks has brought increased attention to the security and robustness of these models. While existing adversarial attack algorithms have demonstrated success in improving adversarial transferability, their performance remains suboptimal due to a lack of consideration for the discrepancies between target and source models. To address this limitation, we propose a novel method, Inverse Knowledge Distillation (IKD), designed to enhance adversarial transferability effectively. IKD introduces a distillation-inspired loss function that seamlessly integrates with gradient-based attack methods, promoting diversity in attack gradients and mitigating overfitting to specific model architectures. By diversifying gradients, IKD enables the generation of adversarial samples with superior generalization capabilities across different models, significantly enhancing their effectiveness in black-box attack scenarios.
Streamlining the Collaborative Chain of Models into A Single Forward Pass in Generation-Based Tasks
Lyu, Yuanjie, Zhang, Chao, Chen, Yuhao, Chen, Yong, Xu, Tong
In Retrieval-Augmented Generation (RAG) and agent-based frameworks, the "Chain of Models" approach is widely used, where multiple specialized models work sequentially on distinct sub-tasks. This approach is effective but increases resource demands as each model must be deployed separately. Recent advancements attempt to address this by applying prompt tuning, which allows a shared base model to adapt to multiple tasks with minimal parameter changes. However, a key challenge remains: intermediate outputs, passed between models as plain text, require recomputation of hidden states (i.e., Key and Value (KV) states in Transformers) during inference. In this paper, we introduce FTHSS, a novel prompt-tuning method that enables models to share KV hidden states, eliminating redundant forward passes and reducing KV cache storage. By modifying input and attention masks during training, FTHSS allows models to effectively utilize KV hidden states from prior models in both single- and multi-round scenarios. Empirical results on four tasks show that FTHSS matches the performance of traditional model chains while improving inference efficiency.
Scaling Public Health Text Annotation: Zero-Shot Learning vs. Crowdsourcing for Improved Efficiency and Labeling Accuracy
Kazari, Kamyar, Chen, Yong, Shakeri, Zahra
Public health researchers are increasingly interested in using social media data to study health-related behaviors, but manually labeling this data can be labor-intensive and costly. This study explores whether zero-shot labeling using large language models (LLMs) can match or surpass conventional crowd-sourced annotation for Twitter posts related to sleep disorders, physical activity, and sedentary behavior. Multiple annotation pipelines were designed to compare labels produced by domain experts, crowd workers, and LLM-driven approaches under varied prompt-engineering strategies. Our findings indicate that LLMs can rival human performance in straightforward classification tasks and significantly reduce labeling time, yet their accuracy diminishes for tasks requiring more nuanced domain knowledge. These results clarify the trade-offs between automated scalability and human expertise, demonstrating conditions under which LLM-based labeling can be efficiently integrated into public health research without undermining label quality.
Large Language Model Can Be a Foundation for Hidden Rationale-Based Retrieval
Ji, Luo, Guo, Feixiang, Chen, Teng, Gu, Qingqing, Wang, Xiaoyu, Xi, Ningyuan, Wang, Yihong, Yu, Peng, Zhao, Yue, Lei, Hongyang, Jiang, Zhonglin, Chen, Yong
Despite the recent advancement in Retrieval-Augmented Generation (RAG) systems, most retrieval methodologies are often developed for factual retrieval, which assumes query and positive documents are semantically similar. In this paper, we instead propose and study a more challenging type of retrieval task, called hidden rationale retrieval, in which query and document are not similar but can be inferred by reasoning chains, logic relationships, or empirical experiences. To address such problems, an instruction-tuned Large language model (LLM) with a cross-encoder architecture could be a reasonable choice. To further strengthen pioneering LLM-based retrievers, we design a special instruction that transforms the retrieval task into a generative task by prompting LLM to answer a binary-choice question. The model can be fine-tuned with direct preference optimization (DPO). The framework is also optimized for computational efficiency with no performance degradation. We name this retrieval framework by RaHoRe and verify its zero-shot and fine-tuned performance superiority on Emotional Support Conversation (ESC), compared with previous retrieval works. Our study suggests the potential to employ LLM as a foundation for a wider scope of retrieval tasks. Our codes, models, and datasets are available on https://github.com/flyfree5/LaHoRe.
LiDAR-RT: Gaussian-based Ray Tracing for Dynamic LiDAR Re-simulation
Zhou, Chenxu, Fu, Lvchang, Peng, Sida, Yan, Yunzhi, Zhang, Zhanhua, Chen, Yong, Xia, Jiazhi, Zhou, Xiaowei
This paper targets the challenge of real-time LiDAR re-simulation in dynamic driving scenarios. Recent approaches utilize neural radiance fields combined with the physical modeling of LiDAR sensors to achieve high-fidelity re-simulation results. Unfortunately, these methods face limitations due to high computational demands in large-scale scenes and cannot perform real-time LiDAR rendering. To overcome these constraints, we propose LiDAR-RT, a novel framework that supports real-time, physically accurate LiDAR re-simulation for driving scenes. Our primary contribution is the development of an efficient and effective rendering pipeline, which integrates Gaussian primitives and hardware-accelerated ray tracing technology. Specifically, we model the physical properties of LiDAR sensors using Gaussian primitives with learnable parameters and incorporate scene graphs to handle scene dynamics. Building upon this scene representation, our framework first constructs a bounding volume hierarchy (BVH), then casts rays for each pixel and generates novel LiDAR views through a differentiable rendering algorithm. Importantly, our framework supports realistic rendering with flexible scene editing operations and various sensor configurations. Extensive experiments across multiple public benchmarks demonstrate that our method outperforms state-of-the-art methods in terms of rendering quality and efficiency. Our project page is at https://zju3dv.github.io/lidar-rt.
Multi-Party Supervised Fine-tuning of Language Models for Multi-Party Dialogue Generation
Wang, Xiaoyu, Xi, Ningyuan, Chen, Teng, Gu, Qingqing, Zhao, Yue, Chen, Xiaokai, Jiang, Zhonglin, Chen, Yong, Ji, Luo
Large Language Models (LLM) are usually fine-tuned to participate in dyadic or two-party dialogues, which can not adapt well to multi-party dialogues (MPD), which hinders their applications in such scenarios including multi-personal meetings, discussions and daily communication. Previous LLM-based researches mainly focus on the multi-agent framework, while their base LLMs are still pairwisely fine-tuned. In this work, we design a multi-party fine-tuning framework (MuPaS) for LLMs on the multi-party dialogue datasets, and prove such a straightforward framework can let the LLM align with the multi-party conversation style efficiently and effectively. We also design two training strategies which can convert MuPaS into the MPD simulator. Substantial experiments show that MuPaS can achieve state-of-the-art multi-party response, higher accuracy of the-next-speaker prediction, higher human and automatic evaluated utterance qualities, and can even generate reasonably with out-of-distribution scene, topic and role descriptions. The MuPaS framework bridges the LLM training with more complicated multi-party applications, such as conversation generation, virtual rehearsal or meta-universe.
Normative Modeling for AD Diagnosis and Biomarker Identification
Zhao, Songlin, Zhou, Rong, Zhang, Yu, Chen, Yong, He, Lifang
In this paper, we introduce a novel normative modeling approach that incorporates focal loss and adversarial autoencoders (FAAE) for Alzheimer's Disease (AD) diagnosis and biomarker identification. Our method is an end-to-end approach that embeds an adversarial focal loss discriminator within the autoencoder structure, specifically designed to effectively target and capture more complex and challenging cases. We first use the enhanced autoencoder to create a normative model based on data from healthy control (HC) individuals. We then apply this model to estimate total and regional neuroanatomical deviation in AD patients. Through extensive experiments on the OASIS-3 and ADNI datasets, our approach significantly outperforms previous state-of-the-art methods. This advancement not only streamlines the detection process but also provides a greater insight into the biomarker potential for AD. Our code can be found at \url{https://github.com/soz223/FAAE}.