Goto

Collaborating Authors

 Chen, Yizhuo


Foundation Models for CPS-IoT: Opportunities and Challenges

arXiv.org Artificial Intelligence

Methods from machine learning (ML) have transformed the implementation of Perception-Cognition-Communication-Action loops in Cyber-Physical Systems (CPS) and the Internet of Things (IoT), replacing mechanistic and basic statistical models with those derived from data. However, the first generation of ML approaches, which depend on supervised learning with annotated data to create task-specific models, faces significant limitations in scaling to the diverse sensor modalities, deployment configurations, application tasks, and operating dynamics characterizing real-world CPS-IoT systems. The success of task-agnostic foundation models (FMs), including multimodal large language models (LLMs), in addressing similar challenges across natural language, computer vision, and human speech has generated considerable enthusiasm for and exploration of FMs and LLMs as flexible building blocks in CPS-IoT analytics pipelines, promising to reduce the need for costly task-specific engineering. Nonetheless, a significant gap persists between the current capabilities of FMs and LLMs in the CPS-IoT domain and the requirements they must meet to be viable for CPS-IoT applications. In this paper, we analyze and characterize this gap through a thorough examination of the state of the art and our research, which extends beyond it in various dimensions. Based on the results of our analysis and research, we identify essential desiderata that CPS-IoT domain-specific FMs and LLMs must satisfy to bridge this gap. We also propose actions by CPS-IoT researchers to collaborate in developing key community resources necessary for establishing FMs and LLMs as foundational tools for the next generation of CPS-IoT systems.


Results of the Big ANN: NeurIPS'23 competition

arXiv.org Artificial Intelligence

The 2023 Big ANN Challenge, held at NeurIPS 2023, focused on advancing the state-of-the-art in indexing data structures and search algorithms for practical variants of Approximate Nearest Neighbor (ANN) search that reflect the growing complexity and diversity of workloads. Unlike prior challenges that emphasized scaling up classical ANN search ~\cite{DBLP:conf/nips/SimhadriWADBBCH21}, this competition addressed filtered search, out-of-distribution data, sparse and streaming variants of ANNS. Participants developed and submitted innovative solutions that were evaluated on new standard datasets with constrained computational resources. The results showcased significant improvements in search accuracy and efficiency over industry-standard baselines, with notable contributions from both academic and industrial teams. This paper summarizes the competition tracks, datasets, evaluation metrics, and the innovative approaches of the top-performing submissions, providing insights into the current advancements and future directions in the field of approximate nearest neighbor search.


MaSS: Multi-attribute Selective Suppression for Utility-preserving Data Transformation from an Information-theoretic Perspective

arXiv.org Artificial Intelligence

The growing richness of large-scale datasets has been crucial in driving the rapid advancement and wide adoption of machine learning technologies. The massive collection and usage of data, however, pose an increasing risk for people's private and sensitive information due to either inadvertent mishandling or malicious exploitation. Besides legislative solutions, many technical approaches have been proposed towards data privacy protection. However, they bear various limitations such as leading to degraded data availability and utility, or relying on heuristics and lacking solid theoretical bases. To overcome these limitations, we propose a formal information-theoretic definition for this utility-preserving privacy protection problem, and design a data-driven learnable data transformation framework that is capable of selectively suppressing sensitive attributes from target datasets while preserving the other useful attributes, regardless of whether or not they are known in advance or explicitly annotated for preservation. We provide rigorous theoretical analyses on the operational bounds for our framework, and carry out comprehensive experimental evaluations using datasets of a variety of modalities, including facial images, voice audio clips, and human activity motion sensor signals. Results demonstrate the effectiveness and generalizability of our method under various configurations on a multitude of tasks.


On the Efficiency and Robustness of Vibration-based Foundation Models for IoT Sensing: A Case Study

arXiv.org Artificial Intelligence

This paper demonstrates the potential of vibration-based Foundation Models (FMs), pre-trained with unlabeled sensing data, to improve the robustness of run-time inference in (a class of) IoT applications. A case study is presented featuring a vehicle classification application using acoustic and seismic sensing. The work is motivated by the success of foundation models in the areas of natural language processing and computer vision, leading to generalizations of the FM concept to other domains as well, where significant amounts of unlabeled data exist that can be used for self-supervised pre-training. One such domain is IoT applications. Foundation models for selected sensing modalities in the IoT domain can be pre-trained in an environment-agnostic fashion using available unlabeled sensor data and then fine-tuned to the deployment at hand using a small amount of labeled data. The paper shows that the pre-training/fine-tuning approach improves the robustness of downstream inference and facilitates adaptation to different environmental conditions. More specifically, we present a case study in a real-world setting to evaluate a simple (vibration-based) FM-like model, called FOCAL, demonstrating its superior robustness and adaptation, compared to conventional supervised deep neural networks (DNNs). We also demonstrate its superior convergence over supervised solutions. Our findings highlight the advantages of vibration-based FMs (and FM-inspired selfsupervised models in general) in terms of inference robustness, runtime efficiency, and model adaptation (via fine-tuning) in resource-limited IoT settings.