Goto

Collaborating Authors

 Chen, Yawen


Machine Learning-Driven Student Performance Prediction for Enhancing Tiered Instruction

arXiv.org Artificial Intelligence

Student performance prediction is one of the most important subjects in educational data mining. As a modern technology, machine learning offers powerful capabilities in feature extraction and data modeling, providing essential support for diverse application scenarios, as evidenced by recent studies confirming its effectiveness in educational data mining. However, despite extensive prediction experiments, machine learning methods have not been effectively integrated into practical teaching strategies, hindering their application in modern education. In addition, massive features as input variables for machine learning algorithms often leads to information redundancy, which can negatively impact prediction accuracy. Therefore, how to effectively use machine learning methods to predict student performance and integrate the prediction results with actual teaching scenarios is a worthy research subject. To this end, this study integrates the results of machine learning-based student performance prediction with tiered instruction, aiming to enhance student outcomes in target course, which is significant for the application of educational data mining in contemporary teaching scenarios. Specifically, we collect original educational data and perform feature selection to reduce information redundancy. Then, the performance of five representative machine learning methods is analyzed and discussed with Random Forest showing the best performance. Furthermore, based on the results of the classification of students, tiered instruction is applied accordingly, and different teaching objectives and contents are set for all levels of students. The comparison of teaching outcomes between the control and experimental classes, along with the analysis of questionnaire results, demonstrates the effectiveness of the proposed framework.


Concept-Aware Latent and Explicit Knowledge Integration for Enhanced Cognitive Diagnosis

arXiv.org Artificial Intelligence

Cognitive diagnosis can infer the students' mastery of specific knowledge concepts based on historical response logs. However, the existing cognitive diagnostic models (CDMs) represent students' proficiency via a unidimensional perspective, which can't assess the students' mastery on each knowledge concept comprehensively. Moreover, the Q-matrix binarizes the relationship between exercises and knowledge concepts, and it can't represent the latent relationship between exercises and knowledge concepts. Especially, when the granularity of knowledge attributes refines increasingly, the Q-matrix becomes incomplete correspondingly and the sparse binary representation (0/1) fails to capture the intricate relationships among knowledge concepts. To address these issues, we propose a Concept-aware Latent and Explicit Knowledge Integration model for cognitive diagnosis (CLEKI-CD). Specifically, a multidimensional vector is constructed according to the students' mastery and exercise difficulty for each knowledge concept from multiple perspectives, which enhances the representation capabilities of the model. Moreover, a latent Q-matrix is generated by our proposed attention-based knowledge aggregation method, and it can uncover the coverage degree of exercises over latent knowledge. The latent Q-matrix can supplement the sparse explicit Q-matrix with the inherent relationships among knowledge concepts, and mitigate the knowledge coverage problem. Furthermore, we employ a combined cognitive diagnosis layer to integrate both latent and explicit knowledge, further enhancing cognitive diagnosis performance. Extensive experiments on real-world datasets demonstrate that CLEKI-CD outperforms the state-of-the-art models. The proposed CLEKI-CD is promising in practical applications in the field of intelligent education, as it exhibits good interpretability with diagnostic results.


Efficient All-reduce for Distributed DNN Training in Optical Interconnect System

arXiv.org Artificial Intelligence

Communication efficiency plays an important role in accelerating the distributed training of Deep Neural Networks (DNN). All-reduce is the crucial communication primitive to reduce model parameters in distributed DNN training. Most existing all-reduce algorithms are designed for traditional electrical interconnect systems, which cannot meet the communication requirements for distributed training of large DNNs due to the low data bandwidth of the electrical interconnect systems. One of the promising alternatives for electrical interconnect is optical interconnect, which can provide high bandwidth, low transmission delay, and low power cost. We propose an efficient scheme called WRHT (Wavelength Reused Hierarchical Tree) for implementing all-reduce operation in optical interconnect systems. WRHT can take advantage of WDM (Wavelength Division Multiplexing) to reduce the communication time of distributed data-parallel DNN training. We further derive the required number of wavelengths, the minimum number of communication steps, and the communication time for the all-reduce operation on optical interconnect. The constraint of insertion loss is also considered in our analysis. Simulation results show that the communication time of all-reduce by WRHT is reduced by 80.81%, 64.36%, and 82.12%, respectively, compared with three traditional all-reduce algorithms according to our simulation results of an optical interconnect system. Our results also show that WRHT can reduce the communication time of all-reduce operation by 92.42% and 91.31% compared to two existing all-reduce algorithms running in the electrical interconnect system.


Selecting Proper Multi-Class SVM Training Methods

AAAI Conferences

Support Vector Machines (SVMs) are excellent candidate solutions to solving multi-class problems, and multi-class SVMs can be trained by several different methods. Different training methods commonly produce SVMs with different effectiveness, and no multi-class SVM training method always outperforms other multi-class SVM training methods on all problems. This raises difficulty for practitioners to choose the best training method for a given problem. In this work, we propose a Multi-class Method Selection (MMS) approach to help users select the most appropriate method among one-versus-one (OVO), one-versus-all (OVA) and structural SVMs (SSVMs) for a given problem. Our key idea is to select the training method based on the distribution of training data and the similarity between different classes. Using the distribution and class similarity, we estimate the unclassifiable rate of each multi-class SVM training method, and select the training method with the minimum unclassifiable rate. Our initial findings show: (i) SSVMs with linear kernel perform worse than OVO and OVA; (ii) MMS often produces SVM classifiers that can confidently classify unseen instances.


Improving Efficiency of SVM k -Fold Cross-Validation by Alpha Seeding

AAAI Conferences

The k-fold cross-validation is commonly used to evaluate the effectiveness of SVMs with the selected hyper-parameters. It is known that the SVM k-fold cross-validation is expensive, since it requires training k SVMs. However, little work has explored reusing the h-th SVM for training the (h+1)-th SVM for improving the efficiency of k-fold cross-validation. In this paper, we propose three algorithms that reuse the h-th SVM for improving the efficiency of training the (h+1)-th SVM. Our key idea is to efficiently identify the support vectors and to accurately estimate their associated weights (also called alpha values) of the next SVM by using the previous SVM. Our experimental results show that our algorithms are several times faster than the k-fold cross-validation which does not make use of the previously trained SVM. Moreover, our algorithms produce the same results (hence same accuracy) as the k-fold cross-validation which does not make use of the previously trained SVM.