Goto

Collaborating Authors

 Chen, Xiaomeng


Harnessing the Power of Vibration Motors to Develop Miniature Untethered Robotic Fishes

arXiv.org Artificial Intelligence

Miniature underwater robots play a crucial role in the exploration and development of marine resources, particularly in confined spaces and high-pressure deep-sea environments. This study presents the design, optimization, and performance of a miniature robotic fish, powered by the oscillation of bio-inspired fins. These fins feature a rigid-flexible hybrid structure and use an eccentric rotating mass (ERM) vibration motor as the excitation source to generate high-frequency unidirectional oscillations that induce acoustic streaming for propulsion. The drive mechanism, powered by miniature ERM vibration motors, eliminates the need for complex mechanical drive systems, enabling complete isolation of the entire drive system from the external environment and facilitating the miniaturization of the robotic fish. A compact, untethered robotic fish, measuring 85*60*45 mm^3, is equipped with three bio-inspired fins located at the pectoral and caudal positions. Experimental results demonstrate that the robotic fish achieves a maximum forward swimming speed of 1.36 body lengths (BL) per second powered by all fins and minimum turning radius of 0.6 BL when powered by a single fin. These results underscore the significance of employing the ERM vibration motor in advancing the development of highly maneuverable, miniature untethered underwater robots for various marine exploration tasks.


Linear Convergent Distributed Nash Equilibrium Seeking with Compression

arXiv.org Artificial Intelligence

Information compression techniques are majorly employed to address the concern of reducing communication cost over peer-to-peer links. In this paper, we investigate distributed Nash equilibrium (NE) seeking problems in a class of non-cooperative games over directed graphs with information compression. To improve communication efficiency, a compressed distributed NE seeking (C-DNES) algorithm is proposed to obtain a NE for games, where the differences between decision vectors and their estimates are compressed. The proposed algorithm is compatible with a general class of compression operators, including both unbiased and biased compressors. Moreover, our approach only requires the adjacency matrix of the directed graph to be row-stochastic, in contrast to past works that relied on balancedness or specific global network parameters. It is shown that C-DNES not only inherits the advantages of conventional distributed NE algorithms, achieving linear convergence rate for games with restricted strongly monotone mappings, but also saves communication costs in terms of transmitted bits. Finally, numerical simulations illustrate the advantages of C-DNES in saving communication cost by an order of magnitude under different compressors.