Goto

Collaborating Authors

 Chen, Wenqing


Mitigating Social Bias in Large Language Models: A Multi-Objective Approach within a Multi-Agent Framework

arXiv.org Artificial Intelligence

Natural language processing (NLP) has seen remarkable advancements with the development of large language models (LLMs). Despite these advancements, LLMs often produce socially biased outputs. Recent studies have mainly addressed this problem by prompting LLMs to behave ethically, but this approach results in unacceptable performance degradation. In this paper, we propose a multi-objective approach within a multi-agent framework (MOMA) to mitigate social bias in LLMs without significantly compromising their performance. The key idea of MOMA involves deploying multiple agents to perform causal interventions on bias-related contents of the input questions, breaking the shortcut connection between these contents and the corresponding answers. Unlike traditional debiasing techniques leading to performance degradation, MOMA substantially reduces bias while maintaining accuracy in downstream tasks. Our experiments conducted on two datasets and two models demonstrate that MOMA reduces bias scores by up to 87.7%, with only a marginal performance degradation of up to 6.8% in the BBQ dataset. Additionally, it significantly enhances the multi-objective metric icat in the StereoSet dataset by up to 58.1%. Code will be made available at https://github.com/Cortantse/MOMA.


Chain-of-Thought Tuning: Masked Language Models can also Think Step By Step in Natural Language Understanding

arXiv.org Artificial Intelligence

Chain-of-Thought (CoT) is a technique that guides Large Language Models (LLMs) to decompose complex tasks into multi-step reasoning through intermediate steps in natural language form. Briefly, CoT enables LLMs to think step by step. However, although many Natural Language Understanding (NLU) tasks also require thinking step by step, LLMs perform less well than small-scale Masked Language Models (MLMs). To migrate CoT from LLMs to MLMs, we propose Chain-of-Thought Tuning (CoTT), a two-step reasoning framework based on prompt tuning, to implement step-by-step thinking for MLMs on NLU tasks. From the perspective of CoT, CoTT's two-step framework enables MLMs to implement task decomposition; CoTT's prompt tuning allows intermediate steps to be used in natural language form. Thereby, the success of CoT can be extended to NLU tasks through MLMs. To verify the effectiveness of CoTT, we conduct experiments on two NLU tasks: hierarchical classification and relation extraction, and the results show that CoTT outperforms baselines and achieves state-of-the-art performance.


Accurate Use of Label Dependency in Multi-Label Text Classification Through the Lens of Causality

arXiv.org Artificial Intelligence

Multi-Label Text Classification (MLTC) aims to assign the most relevant labels to each given text. Existing methods demonstrate that label dependency can help to improve the model's performance. However, the introduction of label dependency may cause the model to suffer from unwanted prediction bias. In this study, we attribute the bias to the model's misuse of label dependency, i.e., the model tends to utilize the correlation shortcut in label dependency rather than fusing text information and label dependency for prediction. Motivated by causal inference, we propose a CounterFactual Text Classifier (CFTC) to eliminate the correlation bias, and make causality-based predictions. Specifically, our CFTC first adopts the predict-then-modify backbone to extract precise label information embedded in label dependency, then blocks the correlation shortcut through the counterfactual de-bias technique with the help of the human causal graph. Experimental results on three datasets demonstrate that our CFTC significantly outperforms the baselines and effectively eliminates the correlation bias in datasets.


Unlock the Potential of Counterfactually-Augmented Data in Out-Of-Distribution Generalization

arXiv.org Artificial Intelligence

Counterfactually-Augmented Data (CAD) -- minimal editing of sentences to flip the corresponding labels -- has the potential to improve the Out-Of-Distribution (OOD) generalization capability of language models, as CAD induces language models to exploit domain-independent causal features and exclude spurious correlations. However, the empirical results of CAD's OOD generalization are not as efficient as anticipated. In this study, we attribute the inefficiency to the myopia phenomenon caused by CAD: language models only focus on causal features that are edited in the augmentation operation and exclude other non-edited causal features. Therefore, the potential of CAD is not fully exploited. To address this issue, we analyze the myopia phenomenon in feature space from the perspective of Fisher's Linear Discriminant, then we introduce two additional constraints based on CAD's structural properties (dataset-level and sentence-level) to help language models extract more complete causal features in CAD, thereby mitigating the myopia phenomenon and improving OOD generalization capability. We evaluate our method on two tasks: Sentiment Analysis and Natural Language Inference, and the experimental results demonstrate that our method could unlock the potential of CAD and improve the OOD generalization performance of language models by 1.0% to 5.9%.


Improving the Out-Of-Distribution Generalization Capability of Language Models: Counterfactually-Augmented Data is not Enough

arXiv.org Artificial Intelligence

Counterfactually-Augmented Data (CAD) has the potential to improve language models' Out-Of-Distribution (OOD) generalization capability, as CAD induces language models to exploit causal features and exclude spurious correlations. However, the empirical results of OOD generalization on CAD are not as efficient as expected. In this paper, we attribute the inefficiency to Myopia Phenomenon caused by CAD: language models only focus on causal features that are edited in the augmentation and exclude other non-edited causal features. As a result, the potential of CAD is not fully exploited. Based on the structural properties of CAD, we design two additional constraints to help language models extract more complete causal features contained in CAD, thus improving the OOD generalization capability. We evaluate our method on two tasks: Sentiment Analysis and Natural Language Inference, and the experimental results demonstrate that our method could unlock CAD's potential and improve language models' OOD generalization capability.


MaxGNR: A Dynamic Weight Strategy via Maximizing Gradient-to-Noise Ratio for Multi-Task Learning

arXiv.org Artificial Intelligence

When modeling related tasks in computer vision, Multi-Task Learning (MTL) can outperform Single-Task Learning (STL) due to its ability to capture intrinsic relatedness among tasks. However, MTL may encounter the insufficient training problem, i.e., some tasks in MTL may encounter non-optimal situation compared with STL. A series of studies point out that too much gradient noise would lead to performance degradation in STL, however, in the MTL scenario, Inter-Task Gradient Noise (ITGN) is an additional source of gradient noise for each task, which can also affect the optimization process. In this paper, we point out ITGN as a key factor leading to the insufficient training problem. We define the Gradient-to-Noise Ratio (GNR) to measure the relative magnitude of gradient noise and design the MaxGNR algorithm to alleviate the ITGN interference of each task by maximizing the GNR of each task. We carefully evaluate our MaxGNR algorithm on two standard image MTL datasets: NYUv2 and Cityscapes. The results show that our algorithm outperforms the baselines under identical experimental conditions.