Goto

Collaborating Authors

 Chen, Wen-Tse


Decentralized Navigation of a Cable-Towed Load using Quadrupedal Robot Team via MARL

arXiv.org Artificial Intelligence

This work addresses the challenge of enabling a team of quadrupedal robots to collaboratively tow a cable-connected load through cluttered and unstructured environments while avoiding obstacles. Leveraging cables allows the multi-robot system to navigate narrow spaces by maintaining slack when necessary. However, this introduces hybrid physical interactions due to alternating taut and slack states, with computational complexity that scales exponentially as the number of agents increases. To tackle these challenges, we developed a scalable and decentralized system capable of dynamically coordinating a variable number of quadrupedal robots while managing the hybrid physical interactions inherent in the load-towing task. At the core of this system is a novel multi-agent reinforcement learning (MARL)-based planner, designed for decentralized coordination. The MARL-based planner is trained using a centralized training with decentralized execution (CTDE) framework, enabling each robot to make decisions autonomously using only local (ego) observations. To accelerate learning and ensure effective collaboration across varying team sizes, we introduce a tailored training curriculum for MARL. Experimental results highlight the flexibility and scalability of the framework, demonstrating successful deployment with one to four robots in real-world scenarios and up to twelve robots in simulation. The decentralized planner maintains consistent inference times, regardless of the team size. Additionally, the proposed system demonstrates robustness to environment perturbations and adaptability to varying load weights. This work represents a step forward in achieving flexible and efficient multi-legged robotic collaboration in complex and real-world environments.


State Combinatorial Generalization In Decision Making With Conditional Diffusion Models

arXiv.org Artificial Intelligence

Many real-world decision-making problems are combinatorial in nature, where states (e.g., surrounding traffic of a self-driving car) can be seen as a combination of basic elements (e.g., pedestrians, trees, and other cars). Due to combinatorial complexity, observing all combinations of basic elements in the training set is infeasible, which leads to an essential yet understudied problem of zero-shot generalization to states that are unseen combinations of previously seen elements. In this work, we first formalize this problem and then demonstrate how existing value-based reinforcement learning (RL) algorithms struggle due to unreliable value predictions in unseen states. We argue that this problem cannot be addressed with exploration alone, but requires more expressive and generalizable models. We demonstrate that behavior cloning with a conditioned diffusion model trained on expert trajectory generalizes better to states formed by new combinations of seen elements than traditional RL methods. Through experiments in maze, driving, and multiagent environments, we show that conditioned diffusion models outperform traditional RL techniques and highlight the broad applicability of our problem formulation.