Goto

Collaborating Authors

 Chen, Weidong


Graph Mixture of Experts and Memory-augmented Routers for Multivariate Time Series Anomaly Detection

arXiv.org Artificial Intelligence

Multivariate time series (MTS) anomaly detection is a critical task that involves identifying abnormal patterns or events in data that consist of multiple interrelated time series. In order to better model the complex interdependence between entities and the various inherent characteristics of each entity, the GNN based methods are widely adopted by existing methods. In each layer of GNN, node features aggregate information from their neighboring nodes to update their information. In doing so, from shallow layer to deep layer in GNN, original individual node features continue to be weakened and more structural information,i.e., from short-distance neighborhood to long-distance neighborhood, continues to be enhanced. However, research to date has largely ignored the understanding of how hierarchical graph information is represented and their characteristics that can benefit anomaly detection. Existing methods simply leverage the output from the last layer of GNN for anomaly estimation while neglecting the essential information contained in the intermediate GNN layers. To address such limitations, in this paper, we propose a Graph Mixture of Experts (Graph-MoE) network for multivariate time series anomaly detection, which incorporates the mixture of experts (MoE) module to adaptively represent and integrate hierarchical multi-layer graph information into entity representations. It is worth noting that our Graph-MoE can be integrated into any GNN-based MTS anomaly detection method in a plug-and-play manner. In addition, the memory-augmented routers are proposed in this paper to capture the correlation temporal information in terms of the global historical features of MTS to adaptively weigh the obtained entity representations to achieve successful anomaly estimation. Extensive experiments on five challenging datasets prove the superiority of our approach and each proposed module.


Multi-Modal UAV Detection, Classification and Tracking Algorithm -- Technical Report for CVPR 2024 UG2 Challenge

arXiv.org Artificial Intelligence

This technical report presents the 1st winning model for UG2+, a task in CVPR 2024 UAV Tracking and Pose-Estimation Challenge. This challenge faces difficulties in drone detection, UAV-type classification and 2D/3D trajectory estimation in extreme weather conditions with multi-modal sensor information, including stereo vision, various Lidars, Radars, and audio arrays. Leveraging this information, we propose a multi-modal UAV detection, classification, and 3D tracking method for accurate UAV classification and tracking. A novel classification pipeline which incorporates sequence fusion, region of interest (ROI) cropping, and keyframe selection is proposed. Our system integrates cutting-edge classification techniques and sophisticated post-processing steps to boost accuracy and robustness. The designed pose estimation pipeline incorporates three modules: dynamic points analysis, a multi-object tracker, and trajectory completion techniques. Extensive experiments have validated the effectiveness and precision of our approach. In addition, we also propose a novel dataset pre-processing method and conduct a comprehensive ablation study for our design. We finally achieved the best performance in the classification and tracking of the MMUAD dataset. The code and configuration of our method are available at https://github.com/dtc111111/Multi-Modal-UAV.


Sentiment-oriented Transformer-based Variational Autoencoder Network for Live Video Commenting

arXiv.org Artificial Intelligence

Automatic live video commenting is with increasing attention due to its significance in narration generation, topic explanation, etc. However, the diverse sentiment consideration of the generated comments is missing from the current methods. Sentimental factors are critical in interactive commenting, and lack of research so far. Thus, in this paper, we propose a Sentiment-oriented Transformer-based Variational Autoencoder (So-TVAE) network which consists of a sentiment-oriented diversity encoder module and a batch attention module, to achieve diverse video commenting with multiple sentiments and multiple semantics. Specifically, our sentiment-oriented diversity encoder elegantly combines VAE and random mask mechanism to achieve semantic diversity under sentiment guidance, which is then fused with cross-modal features to generate live video comments. Furthermore, a batch attention module is also proposed in this paper to alleviate the problem of missing sentimental samples, caused by the data imbalance, which is common in live videos as the popularity of videos varies. Extensive experiments on Livebot and VideoIC datasets demonstrate that the proposed So-TVAE outperforms the state-of-the-art methods in terms of the quality and diversity of generated comments. Related code is available at https://github.com/fufy1024/So-TVAE.


Incremental Joint Learning of Depth, Pose and Implicit Scene Representation on Monocular Camera in Large-scale Scenes

arXiv.org Artificial Intelligence

Dense scene reconstruction for photo-realistic view synthesis has various applications, such as VR/AR, autonomous vehicles. However, most existing methods have difficulties in large-scale scenes due to three core challenges: \textit{(a) inaccurate depth input.} Accurate depth input is impossible to get in real-world large-scale scenes. \textit{(b) inaccurate pose estimation.} Most existing approaches rely on accurate pre-estimated camera poses. \textit{(c) insufficient scene representation capability.} A single global radiance field lacks the capacity to effectively scale to large-scale scenes. To this end, we propose an incremental joint learning framework, which can achieve accurate depth, pose estimation, and large-scale scene reconstruction. A vision transformer-based network is adopted as the backbone to enhance performance in scale information estimation. For pose estimation, a feature-metric bundle adjustment (FBA) method is designed for accurate and robust camera tracking in large-scale scenes. In terms of implicit scene representation, we propose an incremental scene representation method to construct the entire large-scale scene as multiple local radiance fields to enhance the scalability of 3D scene representation. Extended experiments have been conducted to demonstrate the effectiveness and accuracy of our method in depth estimation, pose estimation, and large-scale scene reconstruction.


NeSLAM: Neural Implicit Mapping and Self-Supervised Feature Tracking With Depth Completion and Denoising

arXiv.org Artificial Intelligence

In recent years, there have been significant advancements in 3D reconstruction and dense RGB-D SLAM systems. One notable development is the application of Neural Radiance Fields (NeRF) in these systems, which utilizes implicit neural representation to encode 3D scenes. This extension of NeRF to SLAM has shown promising results. However, the depth images obtained from consumer-grade RGB-D sensors are often sparse and noisy, which poses significant challenges for 3D reconstruction and affects the accuracy of the representation of the scene geometry. Moreover, the original hierarchical feature grid with occupancy value is inaccurate for scene geometry representation. Furthermore, the existing methods select random pixels for camera tracking, which leads to inaccurate localization and is not robust in real-world indoor environments. To this end, we present NeSLAM, an advanced framework that achieves accurate and dense depth estimation, robust camera tracking, and realistic synthesis of novel views. First, a depth completion and denoising network is designed to provide dense geometry prior and guide the neural implicit representation optimization. Second, the occupancy scene representation is replaced with Signed Distance Field (SDF) hierarchical scene representation for high-quality reconstruction and view synthesis. Furthermore, we also propose a NeRF-based self-supervised feature tracking algorithm for robust real-time tracking. Experiments on various indoor datasets demonstrate the effectiveness and accuracy of the system in reconstruction, tracking quality, and novel view synthesis.


Compact 3D Gaussian Splatting For Dense Visual SLAM

arXiv.org Artificial Intelligence

Recent work has shown that 3D Gaussian-based SLAM enables high-quality reconstruction, accurate pose estimation, and real-time rendering of scenes. However, these approaches are built on a tremendous number of redundant 3D Gaussian ellipsoids, leading to high memory and storage costs, and slow training speed. To address the limitation, we propose a compact 3D Gaussian Splatting SLAM system that reduces the number and the parameter size of Gaussian ellipsoids. A sliding window-based masking strategy is first proposed to reduce the redundant ellipsoids. Then we observe that the covariance matrix (geometry) of most 3D Gaussian ellipsoids are extremely similar, which motivates a novel geometry codebook to compress 3D Gaussian geometric attributes, i.e., the parameters. Robust and accurate pose estimation is achieved by a global bundle adjustment method with reprojection loss. Extensive experiments demonstrate that our method achieves faster training and rendering speed while maintaining the state-of-the-art (SOTA) quality of the scene representation.


Vesper: A Compact and Effective Pretrained Model for Speech Emotion Recognition

arXiv.org Artificial Intelligence

This paper presents a paradigm that adapts general large-scale pretrained models (PTMs) to speech emotion recognition task. Although PTMs shed new light on artificial general intelligence, they are constructed with general tasks in mind, and thus, their efficacy for specific tasks can be further improved. Additionally, employing PTMs in practical applications can be challenging due to their considerable size. Above limitations spawn another research direction, namely, optimizing large-scale PTMs for specific tasks to generate task-specific PTMs that are both compact and effective. In this paper, we focus on the speech emotion recognition task and propose an improved emotion-specific pretrained encoder called Vesper. Vesper is pretrained on a speech dataset based on WavLM and takes into account emotional characteristics. To enhance sensitivity to emotional information, Vesper employs an emotion-guided masking strategy to identify the regions that need masking. Subsequently, Vesper employs hierarchical and cross-layer self-supervision to improve its ability to capture acoustic and semantic representations, both of which are crucial for emotion recognition. Experimental results on the IEMOCAP, MELD, and CREMA-D datasets demonstrate that Vesper with 4 layers outperforms WavLM Base with 12 layers, and the performance of Vesper with 12 layers surpasses that of WavLM Large with 24 layers.


Emergent Bio-Functional Similarities in a Cortical-Spike-Train-Decoding Spiking Neural Network Facilitate Predictions of Neural Computation

arXiv.org Artificial Intelligence

Despite its better bio-plausibility, goal-driven spiking neural network (SNN) has not achieved applicable performance for classifying biological spike trains, and showed little bio-functional similarities compared to traditional artificial neural networks. In this study, we proposed the motorSRNN, a recurrent SNN topologically inspired by the neural motor circuit of primates. By employing the motorSRNN in decoding spike trains from the primary motor cortex of monkeys, we achieved a good balance between classification accuracy and energy consumption. The motorSRNN communicated with the input by capturing and cultivating more cosine-tuning, an essential property of neurons in the motor cortex, and maintained its stability during training. Such training-induced cultivation and persistency of cosine-tuning was also observed in our monkeys. Moreover, the motorSRNN produced additional bio-functional similarities at the single-neuron, population, and circuit levels, demonstrating biological authenticity. Thereby, ablation studies on motorSRNN have suggested long-term stable feedback synapses contribute to the training-induced cultivation in the motor cortex. Besides these novel findings and predictions, we offer a new framework for building authentic models of neural computation.


DWFormer: Dynamic Window transFormer for Speech Emotion Recognition

arXiv.org Artificial Intelligence

Speech emotion recognition is crucial to human-computer interaction. The temporal regions that represent different emotions scatter in different parts of the speech locally. Moreover, the temporal scales of important information may vary over a large range within and across speech segments. Although transformer-based models have made progress in this field, the existing models could not precisely locate important regions at different temporal scales. To address the issue, we propose Dynamic Window transFormer (DWFormer), a new architecture that leverages temporal importance by dynamically splitting samples into windows. Self-attention mechanism is applied within windows for capturing temporal important information locally in a fine-grained way. Cross-window information interaction is also taken into account for global communication. DWFormer is evaluated on both the IEMOCAP and the MELD datasets. Experimental results show that the proposed model achieves better performance than the previous state-of-the-art methods.


SpeechFormer++: A Hierarchical Efficient Framework for Paralinguistic Speech Processing

arXiv.org Artificial Intelligence

Paralinguistic speech processing is important in addressing many issues, such as sentiment and neurocognitive disorder analyses. Recently, Transformer has achieved remarkable success in the natural language processing field and has demonstrated its adaptation to speech. However, previous works on Transformer in the speech field have not incorporated the properties of speech, leaving the full potential of Transformer unexplored. In this paper, we consider the characteristics of speech and propose a general structure-based framework, called SpeechFormer++, for paralinguistic speech processing. More concretely, following the component relationship in the speech signal, we design a unit encoder to model the intra- and inter-unit information (i.e., frames, phones, and words) efficiently. According to the hierarchical relationship, we utilize merging blocks to generate features at different granularities, which is consistent with the structural pattern in the speech signal. Moreover, a word encoder is introduced to integrate word-grained features into each unit encoder, which effectively balances fine-grained and coarse-grained information. SpeechFormer++ is evaluated on the speech emotion recognition (IEMOCAP & MELD), depression classification (DAIC-WOZ) and Alzheimer's disease detection (Pitt) tasks. The results show that SpeechFormer++ outperforms the standard Transformer while greatly reducing the computational cost. Furthermore, it delivers superior results compared to the state-of-the-art approaches.