Chen, Tian
An Empirical Study of Methods for Small Object Detection from Satellite Imagery
Yuan, Xiaohui, Chakravarty, Aniv, Gu, Lichuan, Wei, Zhenchun, Lichtenberg, Elinor, Chen, Tian
This paper reviews object detection methods for finding small objects from remote sensing imagery and provides an empirical evaluation of four state-of-the-art methods to gain insights into method performance and technical challenges. In particular, we use car detection from urban satellite images and bee box detection from satellite images of agricultural lands as application scenarios. Drawing from the existing surveys and literature, we identify several top-performing methods for the empirical study. Public, high-resolution satellite image datasets are used in our experiments.
Personalized Quantum Federated Learning for Privacy Image Classification
Shi, Jinjing, Chen, Tian, Zhang, Shichao, Li, Xuelong
Quantum federated learning has brought about the improvement of privacy image classification, while the lack of personality of the client model may contribute to the suboptimal of quantum federated learning. A personalized quantum federated learning algorithm for privacy image classification is proposed to enhance the personality of the client model in the case of an imbalanced distribution of images. First, a personalized quantum federated learning model is constructed, in which a personalized layer is set for the client model to maintain the personalized parameters. Second, a personalized quantum federated learning algorithm is introduced to secure the information exchanged between the client and server.Third, the personalized federated learning is applied to image classification on the FashionMNIST dataset, and the experimental results indicate that the personalized quantum federated learning algorithm can obtain global and local models with excellent performance, even in situations where local training samples are imbalanced. The server's accuracy is 100% with 8 clients and a distribution parameter of 100, outperforming the non-personalized model by 7%. The average client accuracy is 2.9% higher than that of the non-personalized model with 2 clients and a distribution parameter of 1. Compared to previous quantum federated learning algorithms, the proposed personalized quantum federated learning algorithm eliminates the need for additional local training while safeguarding both model and data privacy.It may facilitate broader adoption and application of quantum technologies, and pave the way for more secure, scalable, and efficient quantum distribute machine learning solutions.
Frankenstein: Generating Semantic-Compositional 3D Scenes in One Tri-Plane
Yan, Han, Li, Yang, Wu, Zhennan, Chen, Shenzhou, Sun, Weixuan, Shang, Taizhang, Liu, Weizhe, Chen, Tian, Dai, Xiaqiang, Ma, Chao, Li, Hongdong, Ji, Pan
We present Frankenstein, a diffusion-based framework that can generate semantic-compositional 3D scenes in a single pass. Unlike existing methods that output a single, unified 3D shape, Frankenstein simultaneously generates multiple separated shapes, each corresponding to a semantically meaningful part. The 3D scene information is encoded in one single tri-plane tensor, from which multiple Singed Distance Function (SDF) fields can be decoded to represent the compositional shapes. During training, an auto-encoder compresses tri-planes into a latent space, and then the denoising diffusion process is employed to approximate the distribution of the compositional scenes. Frankenstein demonstrates promising results in generating room interiors as well as human avatars with automatically separated parts. The generated scenes facilitate many downstream applications, such as part-wise re-texturing, object rearrangement in the room or avatar cloth re-targeting.
Flover: A Temporal Fusion Framework for Efficient Autoregressive Model Parallel Inference
Yao, Jinghan, Alnaasan, Nawras, Chen, Tian, Shafi, Aamir, Subramoni, Hari, K., Dhabaleswar, Panda, null
Autoregressive models, despite their commendable performance in a myriad of generative tasks, face challenges stemming from their inherently sequential structure. Inference on these models, by design, harnesses a temporal dependency, where the current token's probability distribution is conditioned on preceding tokens. This inherent characteristic severely impedes computational efficiency during inference as a typical inference request can require more than thousands of tokens, where generating each token requires a load of entire model weights, making the inference more memory-bound. The large overhead becomes profound in real deployment where requests arrive randomly, necessitating various generation lengths. Existing solutions, such as dynamic batching and concurrent instances, introduce significant response delays and bandwidth contention, falling short of achieving optimal latency and throughput. To address these shortcomings, we propose Flover -- a temporal fusion framework for efficiently inferring multiple requests in parallel. We deconstruct the general generation pipeline into pre-processing and token generation, and equip the framework with a dedicated work scheduler for fusing the generation process temporally across all requests. By orchestrating the token-level parallelism, Flover exhibits optimal hardware efficiency and significantly spares the system resources. By further employing a fast buffer reordering algorithm that allows memory eviction of finished tasks, it brings over 11x inference speedup on GPT and 16x on LLAMA compared to the cutting-edge solutions provided by NVIDIA FasterTransformer. Crucially, by leveraging the advanced tensor parallel technique, Flover proves efficacious across diverse computational landscapes, from single-GPU setups to distributed scenarios, thereby offering robust performance optimization that adapts to variable use cases.
Unified High-binding Watermark for Unconditional Image Generation Models
Ma, Ruinan, Tan, Yu-an, Wu, Shangbo, Chen, Tian, Wang, Yajie, Li, Yuanzhang
Deep learning techniques have implemented many unconditional image generation (UIG) models, such as GAN, Diffusion model, etc. The extremely realistic images (also known as AI-Generated Content, AIGC for short) produced by these models bring urgent needs for intellectual property protection such as data traceability and copyright certification. An attacker can steal the output images of the target model and use them as part of the training data to train a private surrogate UIG model. The implementation mechanisms of UIG models are diverse and complex, and there is no unified and effective protection and verification method at present. To address these issues, we propose a two-stage unified watermark verification mechanism with high-binding effects for such models. In the first stage, we use an encoder to invisibly write the watermark image into the output images of the original AIGC tool, and reversely extract the watermark image through the corresponding decoder. In the second stage, we design the decoder fine-tuning process, and the fine-tuned decoder can make correct judgments on whether the suspicious model steals the original AIGC tool data. Experiments demonstrate our method can complete the verification work with almost zero false positive rate under the condition of only using the model output images. Moreover, the proposed method can achieve data steal verification across different types of UIG models, which further increases the practicality of the method.
Bayesian Neural Decoding Using A Diversity-Encouraging Latent Representation Learning Method
Chen, Tian, Li, Lingge, Elias, Gabriel, Fortin, Norbert, Shahbaba, Babak
It is well established that temporal organization is critical to memory, and that the ability to temporally organize information is fundamental to many perceptual, cognitive, and motor processes. While our understanding of how the brain processes the spatial context of memories has advanced considerably, our understanding of their temporal organization lags far behind. In this paper, we propose a new approach for elucidating the neural basis of complex behaviors and temporal organization of memories. More specifically, we focus on neural decoding - the prediction of behavioral or experimental conditions based on observed neural data. In general, this is a challenging classification problem, which is of immense interest in neuroscience. Our goal is to develop a new framework that not only improves the overall accuracy of decoding, but also provides a clear latent representation of the decoding process. To accomplish this, our approach uses a Variational Auto-encoder (VAE) model with a diversity-encouraging prior based on determinantal point processes (DPP) to improve latent representation learning by avoiding redundancy in the latent space. We apply our method to data collected from a novel rat experiment that involves presenting repeated sequences of odors at a single port and testing the rats' ability to identify each odor. We show that our method leads to substantially higher accuracy rate for neural decoding and allows to discover novel biological phenomena by providing a clear latent representation of the decoding process.