Chen, Quan
Neural Network Surrogate Model for Junction Temperature and Hotspot Position in $3$D Multi-Layer High Bandwidth Memory (HBM) Chiplets under Varying Thermal Conditions
Zhang, Chengxin, Liu, Yujie, Chen, Quan
As the demand for computational power increases, high-bandwidth memory (HBM) has become a critical technology for next-generation computing systems. However, the widespread adoption of HBM presents significant thermal management challenges, particularly in multilayer through-silicon-via (TSV) stacked structures under varying thermal conditions, where accurate prediction of junction temperature and hotspot position is essential during the early design. This work develops a data-driven neural network model for the fast prediction of junction temperature and hotspot position in 3D HBM chiplets. The model, trained with a data set of $13,494$ different combinations of thermal condition parameters, sampled from a vast parameter space characterized by high-dimensional combination (up to $3^{27}$), can accurately and quickly infer the junction temperature and hotspot position for any thermal conditions in the parameter space. Moreover, it shows good generalizability for other thermal conditions not considered in the parameter space. The data set is constructed using accurate finite element solvers. This method not only minimizes the reliance on costly experimental tests and extensive computational resources for finite element analysis but also accelerates the design and optimization of complex HBM systems, making it a valuable tool for improving thermal management and performance in high-performance computing applications.
Comet: Fine-grained Computation-communication Overlapping for Mixture-of-Experts
Zhang, Shulai, Zheng, Ningxin, Lin, Haibin, Jiang, Ziheng, Bao, Wenlei, Jiang, Chengquan, Hou, Qi, Cui, Weihao, Zheng, Size, Chang, Li-Wen, Chen, Quan, Liu, Xin
Mixture-of-experts (MoE) has been extensively employed to scale large language models to trillion-plus parameters while maintaining a fixed computational cost. The development of large MoE models in the distributed scenario encounters the problem of large communication overhead. The inter-device communication of a MoE layer can occupy 47% time of the entire model execution with popular models and frameworks. Therefore, existing methods suggest the communication in a MoE layer to be pipelined with the computation for overlapping. However, these coarse grained overlapping schemes introduce a notable impairment of computational efficiency and the latency concealing is sub-optimal. To this end, we present COMET, an optimized MoE system with fine-grained communication-computation overlapping. Leveraging data dependency analysis and task rescheduling, COMET achieves precise fine-grained overlapping of communication and computation. Through adaptive workload assignment, COMET effectively eliminates fine-grained communication bottlenecks and enhances its adaptability across various scenarios. Our evaluation shows that COMET accelerates the execution of a single MoE layer by $1.96\times$ and for end-to-end execution, COMET delivers a $1.71\times$ speedup on average. COMET has been adopted in the production environment of clusters with ten-thousand-scale of GPUs, achieving savings of millions of GPU hours.
SweetTokenizer: Semantic-Aware Spatial-Temporal Tokenizer for Compact Visual Discretization
Tan, Zhentao, Xue, Ben, Jia, Jian, Wang, Junhao, Ye, Wencai, Shi, Shaoyun, Sun, Mingjie, Wu, Wenjin, Chen, Quan, Jiang, Peng
This paper presents the \textbf{S}emantic-a\textbf{W}ar\textbf{E} spatial-t\textbf{E}mporal \textbf{T}okenizer (SweetTokenizer), a compact yet effective discretization approach for vision data. Our goal is to boost tokenizers' compression ratio while maintaining reconstruction fidelity in the VQ-VAE paradigm. Firstly, to obtain compact latent representations, we decouple images or videos into spatial-temporal dimensions, translating visual information into learnable querying spatial and temporal tokens through a \textbf{C}ross-attention \textbf{Q}uery \textbf{A}uto\textbf{E}ncoder (CQAE). Secondly, to complement visual information during compression, we quantize these tokens via a specialized codebook derived from off-the-shelf LLM embeddings to leverage the rich semantics from language modality. Finally, to enhance training stability and convergence, we also introduce a curriculum learning strategy, which proves critical for effective discrete visual representation learning. SweetTokenizer achieves comparable video reconstruction fidelity with only \textbf{25\%} of the tokens used in previous state-of-the-art video tokenizers, and boost video generation results by \textbf{32.9\%} w.r.t gFVD. When using the same token number, we significantly improves video and image reconstruction results by \textbf{57.1\%} w.r.t rFVD on UCF-101 and \textbf{37.2\%} w.r.t rFID on ImageNet-1K. Additionally, the compressed tokens are imbued with semantic information, enabling few-shot recognition capabilities powered by LLMs in downstream applications.
Orthus: Autoregressive Interleaved Image-Text Generation with Modality-Specific Heads
Kou, Siqi, Jin, Jiachun, Liu, Chang, Ma, Ye, Jia, Jian, Chen, Quan, Jiang, Peng, Deng, Zhijie
We introduce Orthus, an autoregressive (AR) transformer that excels in generating images given textual prompts, answering questions based on visual inputs, and even crafting lengthy image-text interleaved contents. Unlike prior arts on unified multimodal modeling, Orthus simultaneously copes with discrete text tokens and continuous image features under the AR modeling principle. The continuous treatment of visual signals minimizes the information loss for both image understanding and generation while the fully AR formulation renders the characterization of the correlation between modalities straightforward. The key mechanism enabling Orthus to leverage these advantages lies in its modality-specific heads -- one regular language modeling (LM) head predicts discrete text tokens and one diffusion head generates continuous image features conditioning on the output of the backbone. We devise an efficient strategy for building Orthus -- by substituting the Vector Quantization (VQ) operation in the existing unified AR model with a soft alternative, introducing a diffusion head, and tuning the added modules to reconstruct images, we can create an Orthus-base model effortlessly (e.g., within mere 72 A100 GPU hours). Orthus-base can further embrace post-training to better model interleaved images and texts. Empirically, Orthus surpasses competing baselines including Show-o and Chameleon across standard benchmarks, achieving a GenEval score of 0.58 and an MME-P score of 1265.8 using 7B parameters. Orthus also shows exceptional mixed-modality generation capabilities, reflecting the potential for handling intricate practical generation tasks.
Enhancing Instruction-Following Capability of Visual-Language Models by Reducing Image Redundancy
Yang, Te, Jia, Jian, Zhu, Xiangyu, Zhao, Weisong, Wang, Bo, Cheng, Yanhua, Li, Yan, Liu, Shengyuan, Chen, Quan, Jiang, Peng, Gai, Kun, Lei, Zhen
Large Language Models (LLMs) have strong instruction-following capability to interpret and execute tasks as directed by human commands. Multimodal Large Language Models (MLLMs) have inferior instruction-following ability compared to LLMs. However, there is a significant gap in the instruction-following capabilities between the MLLMs and LLMs. In this study, we conduct a pilot experiment, which demonstrates that spatially down-sampling visual tokens significantly enhances the instruction-following capability of MLLMs. This is attributed to the substantial redundancy in visual modality. However, this intuitive method severely impairs the MLLM's multimodal understanding capability. In this paper, we propose Visual-Modality Token Compression (VMTC) and Cross-Modality Attention Inhibition (CMAI) strategies to alleviate this gap between MLLMs and LLMs by inhibiting the influence of irrelevant visual tokens during content generation, increasing the instruction-following ability of the MLLMs while retaining their multimodal understanding capacity. In VMTC module, the primary tokens are retained and the redundant tokens are condensed by token clustering and merging. In CMAI process, we aggregate text-to-image attentions by text-to-text attentions to obtain a text-to-image focus score. Attention inhibition is performed on the text-image token pairs with low scores. Our comprehensive experiments over instruction-following capabilities and VQA-V2, GQA, TextVQA, MME and MMBench five benchmarks, demonstrate that proposed strategy significantly enhances the instruction following capability of MLLMs while preserving the ability to understand and process multimodal inputs.
A QoE-Aware Split Inference Accelerating Algorithm for NOMA-based Edge Intelligence
Yuan, Xin, Li, Ning, Chen, Quan, Xu, Wenchao, Zhang, Zhaoxin, Guo, Song
Even the AI has been widely used and significantly changed our life, deploying the large AI models on resource limited edge devices directly is not appropriate. Thus, the model split inference is proposed to improve the performance of edge intelligence, in which the AI model is divided into different sub models and the resource-intensive sub model is offloaded to edge server wirelessly for reducing resource requirements and inference latency. However, the previous works mainly concentrate on improving and optimizing the system QoS, ignore the effect of QoE which is another critical item for the users except for QoS. Even the QoE has been widely learned in EC, considering the differences between task offloading in EC and split inference in EI, and the specific issues in QoE which are still not addressed in EC and EI, these algorithms cannot work effectively in edge split inference scenarios. Thus, an effective resource allocation algorithm is proposed in this paper, for accelerating split inference in EI and achieving the tradeoff between inference delay, QoE, and resource consumption, abbreviated as ERA. Specifically, the ERA takes the resource consumption, QoE, and inference latency into account to find the optimal model split strategy and resource allocation strategy. Since the minimum inference delay and resource consumption, and maximum QoE cannot be satisfied simultaneously, the gradient descent based algorithm is adopted to find the optimal tradeoff between them. Moreover, the loop iteration GD approach is developed to reduce the complexity of the GD algorithm caused by parameter discretization. Additionally, the properties of the proposed algorithms are investigated, including convergence, complexity, and approximation error. The experimental results demonstrate that the performance of ERA is much better than that of the previous studies.
Knowledge Adaptation from Large Language Model to Recommendation for Practical Industrial Application
Jia, Jian, Wang, Yipei, Li, Yan, Chen, Honggang, Bai, Xuehan, Liu, Zhaocheng, Liang, Jian, Chen, Quan, Li, Han, Jiang, Peng, Gai, Kun
Contemporary recommender systems predominantly rely on collaborative filtering techniques, employing ID-embedding to capture latent associations among users and items. However, this approach overlooks the wealth of semantic information embedded within textual descriptions of items, leading to suboptimal performance in cold-start scenarios and long-tail user recommendations. Leveraging the capabilities of Large Language Models (LLMs) pretrained on massive text corpus presents a promising avenue for enhancing recommender systems by integrating open-world domain knowledge. In this paper, we propose an Llm-driven knowlEdge Adaptive RecommeNdation (LEARN) framework that synergizes open-world knowledge with collaborative knowledge. We address computational complexity concerns by utilizing pretrained LLMs as item encoders and freezing LLM parameters to avoid catastrophic forgetting and preserve open-world knowledge. To bridge the gap between the open-world and collaborative domains, we design a twin-tower structure supervised by the recommendation task and tailored for practical industrial application. Through offline experiments on the large-scale industrial dataset and online experiments on A/B tests, we demonstrate the efficacy of our approach.
A Codesign of Scheduling and Parallelization for Large Model Training in Heterogeneous Clusters
Xue, Chunyu, Cui, Weihao, Zhao, Han, Chen, Quan, Zhang, Shulai, Yang, Pengyu, Yang, Jing, Li, Shaobo, Guo, Minyi
Joint consideration of scheduling and adaptive parallelism offers great opportunities for improving the training efficiency of large models on heterogeneous GPU clusters. However, integrating adaptive parallelism into a cluster scheduler expands the cluster scheduling space. The new space is the product of the original scheduling space and the parallelism exploration space of adaptive parallelism (also a product of pipeline, data, and tensor parallelism). The exponentially enlarged scheduling space and ever-changing optimal parallelism plan from adaptive parallelism together result in the contradiction between low-overhead and accurate performance data acquisition for efficient cluster scheduling. This paper presents Crius, a training system for efficiently scheduling multiple large models with adaptive parallelism in a heterogeneous cluster. Crius proposes a novel scheduling granularity called Cell. It represents a job with deterministic resources and pipeline stages. The exploration space of Cell is shrunk to the product of only data and tensor parallelism, thus exposing the potential for accurate and low-overhead performance estimation. Crius then accurately estimates Cells and efficiently schedules training jobs. When a Cell is selected as a scheduling choice, its represented job runs with the optimal parallelism plan explored. Experimental results show that Crius reduces job completion time by up to 48.9% and schedules large models with up to 1.49x cluster throughput improvement.
Mobility and Cost Aware Inference Accelerating Algorithm for Edge Intelligence
Yuan, Xin, Li, Ning, Wei, kang, Xu, Wenchao, Chen, Quan, Chen, Hao, Guo, Song
The edge intelligence (EI) has been widely applied recently. Spliting the model between device, edge server, and cloud can improve the performance of EI greatly. The model segmentation without user mobility has been investigated deeply by previous works. However, in most use cases of EI, the end devices are mobile. Only a few works have been carried out on this aspect. These works still have many issues, such as ignoring the energy consumption of mobile device, inappropriate network assumption, and low effectiveness on adaptiving user mobility, etc. Therefore, for addressing the disadvantages of model segmentation and resource allocation in previous works, we propose mobility and cost aware model segmentation and resource allocation algorithm for accelerating the inference at edge (MCSA). Specfically, in the scenario without user mobility, the loop interation gradient descent (Li-GD) algorithm is provided. When the mobile user has a large model inference task needs to be calculated, it will take the energy consumption of mobile user, the communication and computing resource renting cost, and the inference delay into account to find the optimal model segmentation and resource allocation strategy. In the scenario with user mobility, the mobiity aware Li-GD (MLi-GD) algorithm is proposed to calculate the optimal strategy. Then, the properties of the proposed algorithms are investigated, including convergence, complexity, and approximation ratio. The experimental results demonstrate the effectiveness of the proposed algorithms.
MARS: Exploiting Multi-Level Parallelism for DNN Workloads on Adaptive Multi-Accelerator Systems
Shen, Guan, Zhao, Jieru, Wang, Zeke, Lin, Zhe, Ding, Wenchao, Wu, Chentao, Chen, Quan, Guo, Minyi
Along with the fast evolution of deep neural networks, the hardware system is also developing rapidly. As a promising solution achieving high scalability and low manufacturing cost, multi-accelerator systems widely exist in data centers, cloud platforms, and SoCs. Thus, a challenging problem arises in multi-accelerator systems: selecting a proper combination of accelerators from available designs and searching for efficient DNN mapping strategies. To this end, we propose MARS, a novel mapping framework that can perform computation-aware accelerator selection, and apply communication-aware sharding strategies to maximize parallelism. Experimental results show that MARS can achieve 32.2% latency reduction on average for typical DNN workloads compared to the baseline, and 59.4% latency reduction on heterogeneous models compared to the corresponding state-of-the-art method.