Chen, Qian
Exploring Speaker-Related Information in Spoken Language Understanding for Better Speaker Diarization
Cheng, Luyao, Zheng, Siqi, Qinglin, Zhang, Wang, Hui, Chen, Yafeng, Chen, Qian
Speaker diarization(SD) is a classic task in speech processing and is crucial in multi-party scenarios such as meetings and conversations. Current mainstream speaker diarization approaches consider acoustic information only, which result in performance degradation when encountering adverse acoustic conditions. In this paper, we propose methods to extract speaker-related information from semantic content in multi-party meetings, which, as we will show, can further benefit speaker diarization. We introduce two sub-tasks, Dialogue Detection and Speaker-Turn Detection, in which we effectively extract speaker information from conversational semantics. We also propose a simple yet effective algorithm to jointly model acoustic and semantic information and obtain speaker-identified texts. Experiments on both AISHELL-4 and AliMeeting datasets show that our method achieves consistent improvements over acoustic-only speaker diarization systems.
Meeting Action Item Detection with Regularized Context Modeling
Liu, Jiaqing, Deng, Chong, Zhang, Qinglin, Chen, Qian, Wang, Wen
Meetings are increasingly important for collaborations. Action items in meeting transcripts are crucial for managing post-meeting to-do tasks, which usually are summarized laboriously. The Action Item Detection task aims to automatically detect meeting content associated with action items. However, datasets manually annotated with action item detection labels are scarce and in small scale. We construct and release the first Chinese meeting corpus with manual action item annotations. In addition, we propose a Context-Drop approach to utilize both local and global contexts by contrastive learning, and achieve better accuracy and robustness for action item detection. We also propose a Lightweight Model Ensemble method to exploit different pre-trained models. Experimental results on our Chinese meeting corpus and the English AMI corpus demonstrate the effectiveness of the proposed approaches.
MUG: A General Meeting Understanding and Generation Benchmark
Zhang, Qinglin, Deng, Chong, Liu, Jiaqing, Yu, Hai, Chen, Qian, Wang, Wen, Yan, Zhijie, Liu, Jinglin, Ren, Yi, Zhao, Zhou
Listening to long video/audio recordings from video conferencing and online courses for acquiring information is extremely inefficient. Even after ASR systems transcribe recordings into long-form spoken language documents, reading ASR transcripts only partly speeds up seeking information. It has been observed that a range of NLP applications, such as keyphrase extraction, topic segmentation, and summarization, significantly improve users' efficiency in grasping important information. The meeting scenario is among the most valuable scenarios for deploying these spoken language processing (SLP) capabilities. However, the lack of large-scale public meeting datasets annotated for these SLP tasks severely hinders their advancement. To prompt SLP advancement, we establish a large-scale general Meeting Understanding and Generation Benchmark (MUG) to benchmark the performance of a wide range of SLP tasks, including topic segmentation, topic-level and session-level extractive summarization and topic title generation, keyphrase extraction, and action item detection. To facilitate the MUG benchmark, we construct and release a large-scale meeting dataset for comprehensive long-form SLP development, the AliMeeting4MUG Corpus, which consists of 654 recorded Mandarin meeting sessions with diverse topic coverage, with manual annotations for SLP tasks on manual transcripts of meeting recordings. To the best of our knowledge, the AliMeeting4MUG Corpus is so far the largest meeting corpus in scale and facilitates most SLP tasks. In this paper, we provide a detailed introduction of this corpus, SLP tasks and evaluation methods, baseline systems and their performance.
Overview of the ICASSP 2023 General Meeting Understanding and Generation Challenge (MUG)
Zhang, Qinglin, Deng, Chong, Liu, Jiaqing, Yu, Hai, Chen, Qian, Wang, Wen, Yan, Zhijie, Liu, Jinglin, Ren, Yi, Zhao, Zhou
ICASSP2023 General Meeting Understanding and Generation Challenge (MUG) focuses on prompting a wide range of spoken language processing (SLP) research on meeting transcripts, as SLP applications are critical to improve users' efficiency in grasping important information in meetings. MUG includes five tracks, including topic segmentation, topic-level and session-level extractive summarization, topic title generation, keyphrase extraction, and action item detection. To facilitate MUG, we construct and release a large-scale meeting dataset, the AliMeeting4MUG Corpus.
Adaptive Knowledge Distillation between Text and Speech Pre-trained Models
Ni, Jinjie, Ma, Yukun, Wang, Wen, Chen, Qian, Ng, Dianwen, Lei, Han, Nguyen, Trung Hieu, Zhang, Chong, Ma, Bin, Cambria, Erik
Learning on a massive amount of speech corpus leads to the recent success of many self-supervised speech models. With knowledge distillation, these models may also benefit from the knowledge encoded by language models that are pre-trained on rich sources of texts. The distillation process, however, is challenging due to the modal disparity between textual and speech embedding spaces. This paper studies metric-based distillation to align the embedding space of text and speech with only a small amount of data without modifying the model structure. Since the semantic and granularity gap between text and speech has been omitted in literature, which impairs the distillation, we propose the Prior-informed Adaptive knowledge Distillation (PAD) that adaptively leverages text/speech units of variable granularity and prior distributions to achieve better global and local alignments between text and speech pre-trained models. We evaluate on three spoken language understanding benchmarks to show that PAD is more effective in transferring linguistic knowledge than other metric-based distillation approaches.
A Graphical Point Process Framework for Understanding Removal Effects in Multi-Touch Attribution
Tao, Jun, Chen, Qian, Snyder, James W. Jr., Kumar, Arava Sai, Meisami, Amirhossein, Xue, Lingzhou
Marketers employ various online advertising channels to reach customers, and they are particularly interested in attribution for measuring the degree to which individual touchpoints contribute to an eventual conversion. The availability of individual customer-level path-to-purchase data and the increasing number of online marketing channels and types of touchpoints bring new challenges to this fundamental problem. We aim to tackle the attribution problem with finer granularity by conducting attribution at the path level. To this end, we develop a novel graphical point process framework to study the direct conversion effects and the full relational structure among numerous types of touchpoints simultaneously. Utilizing the temporal point process of conversion and the graphical structure, we further propose graphical attribution methods to allocate proper path-level conversion credit, called the attribution score, to individual touchpoints or corresponding channels for each customer's path to purchase. Our proposed attribution methods consider the attribution score as the removal effect, and we use the rigorous probabilistic definition to derive two types of removal effects. We examine the performance of our proposed methods in extensive simulation studies and compare their performance with commonly used attribution models. We also demonstrate the performance of the proposed methods in a real-world attribution application.
MDERank: A Masked Document Embedding Rank Approach for Unsupervised Keyphrase Extraction
Zhang, Linhan, Chen, Qian, Wang, Wen, Deng, Chong, Zhang, Shiliang, Li, Bing, Wang, Wei, Cao, Xin
Keyphrases are phrases in a document providing a concise summary of core content, helping readers to understand what the article is talking about in a minute. However, existing unsupervised works are not robust enough to handle various types of documents owing to the mismatch of sequence length for comparison. In this paper, we propose a novel unsupervised keyword extraction method by leveraging the BERT-based model to select and rank candidate keyphrases with a MASK strategy. In addition, we further enhance the model, denoted as Keyphrases Extraction BERT (KPEBERT), via designing a compatible self-supervised task and conducting a contrast learning. We conducted extensive experimental evaluation to demonstrate the superiority and robustness of the proposed method as well as the effectiveness of KPEBERT.
PoNet: Pooling Network for Efficient Token Mixing in Long Sequences
Tan, Chao-Hong, Chen, Qian, Wang, Wen, Zhang, Qinglin, Zheng, Siqi, Ling, Zhen-Hua
Transformer-based models have achieved great success in various NLP, vision, and speech tasks. However, the core of Transformer, the self-attention mechanism, has a quadratic time and memory complexity with respect to the sequence length, which hinders applications of Transformer-based models to long sequences. Many approaches have been proposed to mitigate this problem, such as sparse attention mechanisms, low-rank matrix approximations and scalable kernels, and token mixing alternatives to self-attention. We propose a novel Pooling Network (PoNet) for token mixing in long sequences with linear complexity. We design multi-granularity pooling and pooling fusion to capture different levels of contextual information and combine their interactions with tokens. On the Long Range Arena benchmark, PoNet significantly outperforms Transformer and achieves competitive accuracy, while being only slightly slower than the fastest model, FNet, across all sequence lengths measured on GPUs. We also conduct systematic studies on the transfer learning capability of PoNet and observe that PoNet achieves 96.0% of the accuracy of BERT on the GLUE benchmark, outperforming FNet by 4.5% relative. Comprehensive ablation analysis demonstrates effectiveness of the designed multi-granularity pooling and pooling fusion for token mixing in long sequences and efficacy of the designed pre-training tasks for PoNet to learn transferable contextualized language representations.
BeamTransformer: Microphone Array-based Overlapping Speech Detection
Zheng, Siqi, Zhang, Shiliang, Huang, Weilong, Chen, Qian, Suo, Hongbin, Lei, Ming, Feng, Jinwei, Yan, Zhijie
We propose BeamTransformer, an efficient architecture to leverage beamformer's edge in spatial filtering and transformer's capability in context sequence modeling. BeamTransformer seeks to optimize modeling of sequential relationship among signals from different spatial direction. Overlapping speech detection is one of the tasks where such optimization is favorable. In this paper we effectively apply BeamTransformer to detect overlapping segments. Comparing to single-channel approach, BeamTransformer exceeds in learning to identify the relationship among different beam sequences and hence able to make predictions not only from the acoustic signals but also the localization of the source. The results indicate that a successful incorporation of microphone array signals can lead to remarkable gains. Moreover, BeamTransformer takes one step further, as speech from overlapped speakers have been internally separated into different beams.