Goto

Collaborating Authors

 Chen, Qian


AI Agents in Engineering Design: A Multi-Agent Framework for Aesthetic and Aerodynamic Car Design

arXiv.org Artificial Intelligence

We introduce the concept of "Design Agents" for engineering applications, particularly focusing on the automotive design process, while emphasizing that our approach can be readily extended to other engineering and design domains. Our framework integrates AI-driven design agents into the traditional engineering workflow, demonstrating how these specialized computational agents interact seamlessly with engineers and designers to augment creativity, enhance efficiency, and significantly accelerate the overall design cycle. By automating and streamlining tasks traditionally performed manually, such as conceptual sketching, styling enhancements, 3D shape retrieval and generative modeling, computational fluid dynamics (CFD) meshing, and aerodynamic simulations, our approach reduces certain aspects of the conventional workflow from weeks and days down to minutes. These agents leverage state-of-the-art vision-language models (VLMs), large language models (LLMs), and geometric deep learning techniques, providing rapid iteration and comprehensive design exploration capabilities. We ground our methodology in industry-standard benchmarks, encompassing a wide variety of conventional automotive designs, and utilize high-fidelity aerodynamic simulations to ensure practical and applicable outcomes. Furthermore, we present design agents that can swiftly and accurately predict simulation outcomes, empowering engineers and designers to engage in more informed design optimization and exploration. This research underscores the transformative potential of integrating advanced generative AI techniques into complex engineering tasks, paving the way for broader adoption and innovation across multiple engineering disciplines.


PartialLoading: User Scheduling and Bandwidth Allocation for Parameter-sharing Edge Inference

arXiv.org Artificial Intelligence

By provisioning inference offloading services, edge inference drives the rapid growth of AI applications at the network edge. However, achieving high task throughput with stringent latency requirements remains a significant challenge. To address this issue, we develop a parameter-sharing AI model loading (PartialLoading) framework for multi-user edge inference, which exploits two key insights: 1) the majority of latency arises from loading AI models into server GPU memory, and 2) different AI models can share a significant number of parameters, for which redundant loading should be avoided. Towards this end, we formulate a joint multi-user scheduling and spectrum bandwidth allocation problem to maximize task throughput by exploiting shared parameter blocks across models. The intuition is to judiciously schedule user requests to reuse the shared parameter blocks between consecutively loaded models, thereby reducing model loading time substantially. To facilitate solution finding, we decouple the problem into two sub-problems, i.e., user scheduling and bandwidth allocation, showing that solving them sequentially is equivalent to solving the original problem. Due to the NP-hardness of the problem, we first study an important special case called the "bottom-layer-sharing" case, where AI models share some bottom layers within clusters, and design a dynamic programming-based algorithm to obtain the optimal solution in polynomial time. For the general case, where shared parameter blocks appear at arbitrary positions within AI models, we propose a greedy heuristic to obtain the sub-optimal solution efficiently. Simulation results demonstrate that the proposed framework significantly improves task throughput under deadline constraints compared with user scheduling without exploiting parameter sharing.


Process Reward Modeling with Entropy-Driven Uncertainty

arXiv.org Artificial Intelligence

This paper presents the Entropy-Driven Unified Process Reward Model (EDU-PRM), a novel framework that approximates state-of-the-art performance in process supervision while drastically reducing training costs. EDU-PRM introduces an entropy-guided dynamic step partitioning mechanism, using logit distribution entropy to pinpoint high-uncertainty regions during token generation dynamically. This self-assessment capability enables precise step-level feedback without manual fine-grained annotation, addressing a critical challenge in process supervision. Experiments on the Qwen2.5-72B model with only 7,500 EDU-PRM-generated training queries demonstrate accuracy closely approximating the full Qwen2.5-72B-PRM (71.1% vs. 71.6%), achieving a 98% reduction in query cost compared to prior methods. This work establishes EDU-PRM as an efficient approach for scalable process reward model training.


TripNet: Learning Large-scale High-fidelity 3D Car Aerodynamics with Triplane Networks

arXiv.org Artificial Intelligence

Computational Fluid Dynamics (CFD) simulations are essential in product design, providing insights into fluid behavior around complex geometries in aerospace and automotive applications. However, high-fidelity CFD simulations are computationally expensive, making rapid design iterations challenging. To address this, we propose TripNet, Triplane CFD Network, a machine learning-based framework leveraging triplane representations to predict the outcomes of large-scale, high-fidelity CFD simulations with significantly reduced computation cost. Our method encodes 3D geometry into compact yet information-rich triplane features, maintaining full geometry fidelity and enabling accurate aerodynamic predictions. Unlike graph- and point cloud-based models, which are inherently discrete and provide solutions only at the mesh nodes, TripNet allows the solution to be queried at any point in the 3D space. Validated on high-fidelity DrivAerNet and DrivAerNet++ car aerodynamics datasets, TripNet achieves state-of-the-art performance in drag coefficient prediction, surface field estimation, and full 3D flow field simulations of industry-standard car designs. By utilizing a shared triplane backbone across multiple tasks, our approach offers a scalable, accurate, and efficient alternative to traditional CFD solvers.


InspireMusic: Integrating Super Resolution and Large Language Model for High-Fidelity Long-Form Music Generation

arXiv.org Artificial Intelligence

We introduce InspireMusic, a framework integrated super resolution and large language model for high-fidelity long-form music generation. A unified framework generates high-fidelity music, songs, and audio, which incorporates an autoregressive transformer with a super-resolution flow-matching model. This framework enables the controllable generation of high-fidelity long-form music at a higher sampling rate from both text and audio prompts. Our model differs from previous approaches, as we utilize an audio tokenizer with one codebook that contains richer semantic information, thereby reducing training costs and enhancing efficiency. This combination enables us to achieve high-quality audio generation with long-form coherence of up to $8$ minutes. Then, an autoregressive transformer model based on Qwen 2.5 predicts audio tokens. Next, we employ a super-resolution flow-matching model to generate high-sampling rate audio with fine-grained details learned from an acoustic codec model. Comprehensive experiments show that the InspireMusic-1.5B-Long model has a comparable performance to recent top-tier open-source systems, including MusicGen and Stable Audio 2.0, on subjective and objective evaluations. The code and pre-trained models are released at https://github.com/FunAudioLLM/InspireMusic.


LED-Merging: Mitigating Safety-Utility Conflicts in Model Merging with Location-Election-Disjoint

arXiv.org Artificial Intelligence

Fine-tuning pre-trained Large Language Models (LLMs) for specialized tasks incurs substantial computational and data costs. While model merging offers a training-free solution to integrate multiple task-specific models, existing methods suffer from safety-utility conflicts where enhanced general capabilities degrade safety safeguards. We identify two root causes: \textbf{neuron misidentification} due to simplistic parameter magnitude-based selection, and \textbf{cross-task neuron interference} during merging. To address these challenges, we propose \textbf{LED-Merging}, a three-stage framework that \textbf{L}ocates task-specific neurons via gradient-based attribution, dynamically \textbf{E}lects critical neurons through multi-model importance fusion, and \textbf{D}isjoints conflicting updates through parameter isolation. Extensive experiments on Llama-3-8B, Mistral-7B, and Llama2-13B demonstrate that LED-Merging reduces harmful response rates(\emph{e.g.}, a 31.4\% decrease on Llama-3-8B-Instruct on HarmBench) while preserving 95\% of utility performance(\emph{e.g.}, 52.39\% accuracy on GSM8K). LED-Merging resolves safety-utility conflicts and provides a lightweight, training-free paradigm for constructing reliable multi-task LLMs.


Ten Challenging Problems in Federated Foundation Models

arXiv.org Artificial Intelligence

Federated Foundation Models (FedFMs) represent a distributed learning paradigm that fuses general competences of foundation models as well as privacy-preserving capabilities of federated learning. This combination allows the large foundation models and the small local domain models at the remote clients to learn from each other in a teacher-student learning setting. This paper provides a comprehensive summary of the ten challenging problems inherent in FedFMs, encompassing foundational theory, utilization of private data, continual learning, unlearning, Non-IID and graph data, bidirectional knowledge transfer, incentive mechanism design, game mechanism design, model watermarking, and efficiency. The ten challenging problems manifest in five pivotal aspects: ``Foundational Theory," which aims to establish a coherent and unifying theoretical framework for FedFMs. ``Data," addressing the difficulties in leveraging domain-specific knowledge from private data while maintaining privacy; ``Heterogeneity," examining variations in data, model, and computational resources across clients; ``Security and Privacy," focusing on defenses against malicious attacks and model theft; and ``Efficiency," highlighting the need for improvements in training, communication, and parameter efficiency. For each problem, we offer a clear mathematical definition on the objective function, analyze existing methods, and discuss the key challenges and potential solutions. This in-depth exploration aims to advance the theoretical foundations of FedFMs, guide practical implementations, and inspire future research to overcome these obstacles, thereby enabling the robust, efficient, and privacy-preserving FedFMs in various real-world applications.


Optimal Algorithms in Linear Regression under Covariate Shift: On the Importance of Precondition

arXiv.org Machine Learning

A common pursuit in modern statistical learning is to attain satisfactory generalization out of the source data distribution (OOD). In theory, the challenge remains unsolved even under the canonical setting of covariate shift for the linear model. This paper studies the foundational (high-dimensional) linear regression where the ground truth variables are confined to an ellipse-shape constraint and addresses two fundamental questions in this regime: (i) given the target covariate matrix, what is the min-max \emph{optimal} algorithm under covariate shift? (ii) for what kinds of target classes, the commonly-used SGD-type algorithms achieve optimality? Our analysis starts with establishing a tight lower generalization bound via a Bayesian Cramer-Rao inequality. For (i), we prove that the optimal estimator can be simply a certain linear transformation of the best estimator for the source distribution. Given the source and target matrices, we show that the transformation can be efficiently computed via a convex program. The min-max optimal analysis for SGD leverages the idea that we recognize both the accumulated updates of the applied algorithms and the ideal transformation as preconditions on the learning variables. We provide sufficient conditions when SGD with its acceleration variants attain optimality.


CS-SHAP: Extending SHAP to Cyclic-Spectral Domain for Better Interpretability of Intelligent Fault Diagnosis

arXiv.org Artificial Intelligence

Neural networks (NNs), with their powerful nonlinear mapping and end-to-end capabilities, are widely applied in mechanical intelligent fault diagnosis (IFD). However, as typical black-box models, they pose challenges in understanding their decision basis and logic, limiting their deployment in high-reliability scenarios. Hence, various methods have been proposed to enhance the interpretability of IFD. Among these, post-hoc approaches can provide explanations without changing model architecture, preserving its flexibility and scalability. However, existing post-hoc methods often suffer from limitations in explanation forms. They either require preprocessing that disrupts the end-to-end nature or overlook fault mechanisms, leading to suboptimal explanations. To address these issues, we derived the cyclic-spectral (CS) transform and proposed the CS-SHAP by extending Shapley additive explanations (SHAP) to the CS domain. CS-SHAP can evaluate contributions from both carrier and modulation frequencies, aligning more closely with fault mechanisms and delivering clearer and more accurate explanations. Three datasets are utilized to validate the superior interpretability of CS-SHAP, ensuring its correctness, reproducibility, and practical performance. With open-source code and outstanding interpretability, CS-SHAP has the potential to be widely adopted and become the post-hoc interpretability benchmark in IFD, even in other classification tasks. The code is available on https://github.com/ChenQian0618/CS-SHAP.


Beyond Yes or No: Predictive Compliance Monitoring Approaches for Quantifying the Magnitude of Compliance Violations

arXiv.org Artificial Intelligence

Most existing process compliance monitoring approaches detect compliance violations in an ex post manner. Only predicate prediction focuses on predicting them. However, predicate prediction provides a binary yes/no notion of compliance, lacking the ability to measure to which extent an ongoing process instance deviates from the desired state as specified in constraints. Here, being able to quantify the magnitude of violation would provide organizations with deeper insights into their operational performance, enabling informed decision making to reduce or mitigate the risk of non-compliance. Thus, we propose two predictive compliance monitoring approaches to close this research gap. The first approach reformulates the binary classification problem as a hybrid task that considers both classification and regression, while the second employs a multi-task learning method to explicitly predict the compliance status and the magnitude of violation for deviant cases simultaneously. In this work, we focus on temporal constraints as they are significant in almost any application domain, e.g., health care. The evaluation on synthetic and real-world event logs demonstrates that our approaches are capable of quantifying the magnitude of violations while maintaining comparable performance for compliance predictions achieved by state-of-the-art approaches.