Goto

Collaborating Authors

 Chen, Pin-Yu


Defining and Evaluating Physical Safety for Large Language Models

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are increasingly used to control robotic systems such as drones, but their risks of causing physical threats and harm in real-world applications remain unexplored. Our study addresses the critical gap in evaluating LLM physical safety by developing a comprehensive benchmark for drone control. We classify the physical safety risks of drones into four categories: (1) human-targeted threats, (2) object-targeted threats, (3) infrastructure attacks, and (4) regulatory violations. Our evaluation of mainstream LLMs reveals an undesirable trade-off between utility and safety, with models that excel in code generation often performing poorly in crucial safety aspects. Furthermore, while incorporating advanced prompt engineering techniques such as In-Context Learning and Chain-of-Thought can improve safety, these methods still struggle to identify unintentional attacks. In addition, larger models demonstrate better safety capabilities, particularly in refusing dangerous commands. Our findings and benchmark can facilitate the design and evaluation of physical safety for LLMs.


Attention Tracker: Detecting Prompt Injection Attacks in LLMs

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have revolutionized various domains but remain vulnerable to prompt injection attacks, where malicious inputs manipulate the model into ignoring original instructions and executing designated action. In this paper, we investigate the underlying mechanisms of these attacks by analyzing the attention patterns within LLMs. We introduce the concept of the distraction effect, where specific attention heads, termed important heads, shift focus from the original instruction to the injected instruction. Building on this discovery, we propose Attention Tracker, a training-free detection method that tracks attention patterns on instruction to detect prompt injection attacks without the need for additional LLM inference. Our method generalizes effectively across diverse models, datasets, and attack types, showing an AUROC improvement of up to 10.0% over existing methods, and performs well even on small LLMs. We demonstrate the robustness of our approach through extensive evaluations and provide insights into safeguarding LLM-integrated systems from prompt injection vulnerabilities.


LabSafety Bench: Benchmarking LLMs on Safety Issues in Scientific Labs

arXiv.org Artificial Intelligence

Laboratory accidents pose significant risks to human life and property, underscoring the importance of robust safety protocols. Despite advancements in safety training, laboratory personnel may still unknowingly engage in unsafe practices. With the increasing reliance on large language models (LLMs) for guidance in various fields, including laboratory settings, there is a growing concern about their reliability in critical safety-related decision-making. Unlike trained human researchers, LLMs lack formal lab safety education, raising questions about their ability to provide safe and accurate guidance. Existing research on LLM trustworthiness primarily focuses on issues such as ethical compliance, truthfulness, and fairness but fails to fully cover safety-critical real-world applications, like lab safety. To address this gap, we propose the Laboratory Safety Benchmark (LabSafety Bench), a comprehensive evaluation framework based on a new taxonomy aligned with Occupational Safety and Health Administration (OSHA) protocols. This benchmark includes 765 multiple-choice questions verified by human experts, assessing LLMs and vision language models (VLMs) performance in lab safety contexts. Our evaluations demonstrate that while GPT-4o outperforms human participants, it is still prone to critical errors, highlighting the risks of relying on LLMs in safety-critical environments. Our findings emphasize the need for specialized benchmarks to accurately assess the trustworthiness of LLMs in real-world safety applications.


Position Specific Scoring Is All You Need? Revisiting Protein Sequence Classification Tasks

arXiv.org Artificial Intelligence

Understanding the structural and functional characteristics of proteins are crucial for developing preventative and curative strategies that impact fields from drug discovery to policy development. An important and popular technique for examining how amino acids make up these characteristics of the protein sequences with position-specific scoring (PSS). While the string kernel is crucial in natural language processing (NLP), it is unclear if string kernels can extract biologically meaningful information from protein sequences, despite the fact that they have been shown to be effective in the general sequence analysis tasks. In this work, we propose a weighted PSS kernel matrix (or W-PSSKM), that combines a PSS representation of protein sequences, which encodes the frequency information of each amino acid in a sequence, with the notion of the string kernel. This results in a novel kernel function that outperforms many other approaches for protein sequence classification. We perform extensive experimentation to evaluate the proposed method. Our findings demonstrate that the W-PSSKM significantly outperforms existing baselines and state-of-the-art methods and achieves up to 45.1\% improvement in classification accuracy.


SEAL: Safety-enhanced Aligned LLM Fine-tuning via Bilevel Data Selection

arXiv.org Artificial Intelligence

Fine-tuning on task-specific data to boost downstream performance is a crucial step for leveraging Large Language Models (LLMs). However, previous studies have demonstrated that fine-tuning the models on several adversarial samples or even benign data can greatly comprise the model's pre-equipped alignment and safety capabilities. In this work, we propose SEAL, a novel framework to enhance safety in LLM fine-tuning. SEAL learns a data ranker based on the bilevel optimization to up rank the safe and high-quality fine-tuning data and down rank the unsafe or low-quality ones. Models trained with SEAL demonstrate superior quality over multiple baselines, with 8.5% and 9.7% win rate increase compared to random selection respectively on Llama-3-8b-Instruct and Merlinite-7b models. Our code is available on github https://github.com/hanshen95/SEAL.


SONAR: A Synthetic AI-Audio Detection Framework and Benchmark

arXiv.org Artificial Intelligence

Recent advances in Text-to-Speech (TTS) and Voice-Conversion (VC) using generative Artificial Intelligence (AI) technology have made it possible to generate high-quality and realistic human-like audio. This introduces significant challenges to distinguishing AI-synthesized speech from the authentic human voice and could raise potential issues of misuse for malicious purposes such as impersonation and fraud, spreading misinformation, deepfakes, and scams. However, existing detection techniques for AI-synthesized audio have not kept pace and often exhibit poor generalization across diverse datasets. In this paper, we introduce SONAR, a synthetic AI-Audio Detection Framework and Benchmark, aiming to provide a comprehensive evaluation for distinguishing cutting-edge AI-synthesized auditory content. SONAR includes a novel evaluation dataset sourced from 9 diverse audio synthesis platforms, including leading TTS providers and state-of-the-art TTS models. It is the first framework to uniformly benchmark AI-audio detection across both traditional and foundation model-based deepfake detection systems. Through extensive experiments, we reveal the generalization limitations of existing detection methods and demonstrate that foundation models exhibit stronger generalization capabilities, which can be attributed to their model size and the scale and quality of pretraining data. Additionally, we explore the effectiveness and efficiency of few-shot fine-tuning in improving generalization, highlighting its potential for tailored applications, such as personalized detection systems for specific entities or individuals. Code and dataset are available at https://github.com/Jessegator/SONAR.


Training Nonlinear Transformers for Chain-of-Thought Inference: A Theoretical Generalization Analysis

arXiv.org Artificial Intelligence

Chain-of-Thought (CoT) is an efficient prompting method that enables the reasoning ability of large language models by augmenting the query using multiple examples with multiple intermediate steps. Despite the empirical success, the theoretical understanding of how to train a Transformer to achieve the CoT ability remains less explored. This is primarily due to the technical challenges involved in analyzing the nonconvex optimization on nonlinear attention models. To the best of our knowledge, this work provides the first theoretical study of training Transformers with nonlinear attention to obtain the CoT generalization capability so that the resulting model can inference on unseen tasks when the input is augmented by examples of the new task. We first quantify the required training samples and iterations to train a Transformer model towards CoT ability. We then prove the success of its CoT generalization on unseen tasks with distribution-shifted testing data. Moreover, we theoretically characterize the conditions for an accurate reasoning output by CoT even when the provided reasoning examples contain noises and are not always accurate. In contrast, in-context learning (ICL), which can be viewed as one-step CoT without intermediate steps, may fail to provide an accurate output when CoT does. These theoretical findings are justified through experiments.


Large Language Models can be Strong Self-Detoxifiers

arXiv.org Artificial Intelligence

This paper contains examples that may be considered offensive and inappropriate. Reducing the likelihood of generating harmful and toxic output is an essential task when aligning large language models (LLMs). Existing methods mainly rely on training an external reward model (i.e., another language model) or fine-tuning the LLM using self-generated data to influence the outcome. In this paper, we show that LLMs have the capability of self-detoxification without the use of an additional reward model or re-training. We propose Self-disciplined Autoregressive Sampling (SASA), a lightweight controlled decoding algorithm for toxicity reduction of LLMs. SASA leverages the contextual representations from an LLM to learn linear subspaces characterizing toxic v.s. When auto-completing a response token-by-token, SASA dynamically tracks the margin of the current output to steer the generation away from the toxic subspace, by adjusting the autoregressive sampling strategy. Recent advancements in large language models (LLMs) have dramatically enhanced their capabilities in textual understanding and reasoning (Brown et al., 2020; Kojima et al., 2022). Their capabilities in performing diverse linguistic tasks and producing coherent texts have catalyzed their adoption across a variety of applications (Rae et al., 2021; Hoffmann et al., 2022; Le Scao et al., 2023; Touvron et al., 2023a;b; Achiam et al., 2023). However, with the escalating size of models (Raffel et al., 2020; Brown et al., 2020; Achiam et al., 2023), there is a corresponding increase in the scale of the training datasets required to avert overfitting and to encapsulate extensive world knowledge. These extensive datasets, predominantly derived from internet crawls and merely subjected to basic filtering protocols (Raffel et al., 2020), often harbor biases that are problematic or directly detrimental for many applications and may not inherently align with these desirable attributes (Wallace et al., 2019; Gehman et al., 2020). In fact, it is known that language models trained on such data may not only mimic but also amplify these biases (Bolukbasi et al., 2016; Caliskan et al., 2017; Zhao et al., 2018; Sheng et al., 2019; Gehman et al., 2020; Hartvigsen et al., For example, an "aligned" LLM may be inadvertently or maliciously tricked into generating harmful or toxic output that causes usage violations and safety concerns (Sun et al., 2024).


Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge

arXiv.org Artificial Intelligence

LLM-as-a-Judge has been widely utilized as an evaluation method in various benchmarks and served as supervised rewards in model training. However, despite their excellence in many domains, potential issues are under-explored, undermining their reliability and the scope of their utility. Therefore, we identify 12 key potential biases and propose a new automated bias quantification framework-CALM-which systematically quantifies and analyzes each type of bias in LLM-as-a-Judge by using automated and principle-guided modification. Our experiments cover multiple popular language models, and the results indicate that while advanced models have achieved commendable overall performance, significant biases persist in certain specific tasks. Empirical results suggest that there remains room for improvement in the reliability of LLM-as-a-Judge. Moreover, we also discuss the explicit and implicit influence of these biases and give some suggestions for the reliable application of LLM-as-a-Judge. Our work highlights the need for stakeholders to address these issues and remind users to exercise caution in LLM-as-a-Judge applications.


Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI

arXiv.org Artificial Intelligence

As generative AI, particularly large language models (LLMs), become increasingly integrated into production applications, new attack surfaces and vulnerabilities emerge and put a focus on adversarial threats in natural language and multi-modal systems. Red-teaming has gained importance in proactively identifying weaknesses in these systems, while blue-teaming works to protect against such adversarial attacks. Despite growing academic interest in adversarial risks for generative AI, there is limited guidance tailored for practitioners to assess and mitigate these challenges in real-world environments. To address this, our contributions include: (1) a practical examination of red- and blue-teaming strategies for securing generative AI, (2) identification of key challenges and open questions in defense development and evaluation, and (3) the Attack Atlas, an intuitive framework that brings a practical approach to analyzing single-turn input attacks, placing it at the forefront for practitioners. This work aims to bridge the gap between academic insights and practical security measures for the protection of generative AI systems.