Goto

Collaborating Authors

 Chen, Peng


DiffusionTalker: Efficient and Compact Speech-Driven 3D Talking Head via Personalizer-Guided Distillation

arXiv.org Artificial Intelligence

Real-time speech-driven 3D facial animation has been attractive in academia and industry. Traditional methods mainly focus on learning a deterministic mapping from speech to animation. Recent approaches start to consider the nondeterministic fact of speech-driven 3D face animation and employ the diffusion model for the task. Existing diffusion-based methods can improve the diversity of facial animation. However, personalized speaking styles conveying accurate lip language is still lacking, besides, efficiency and compactness still need to be improved. In this work, we propose DiffusionTalker to address the above limitations via personalizer-guided distillation. In terms of personalization, we introduce a contrastive personalizer that learns identity and emotion embeddings to capture speaking styles from audio. We further propose a personalizer enhancer during distillation to enhance the influence of embeddings on facial animation. For efficiency, we use iterative distillation to reduce the steps required for animation generation and achieve more than 8x speedup in inference. To achieve compactness, we distill the large teacher model into a smaller student model, reducing our model's storage by 86.4\% while minimizing performance loss. After distillation, users can derive their identity and emotion embeddings from audio to quickly create personalized animations that reflect specific speaking styles. Extensive experiments are conducted to demonstrate that our method outperforms state-of-the-art methods. The code will be released at: https://github.com/ChenVoid/DiffusionTalker.


Industrial-Grade Sensor Simulation via Gaussian Splatting: A Modular Framework for Scalable Editing and Full-Stack Validation

arXiv.org Artificial Intelligence

Sensor simulation is pivotal for scalable validation of autonomous driving systems, yet existing Neural Radiance Fields (NeRF) based methods face applicability and efficiency challenges in industrial workflows. This paper introduces a Gaussian Splatting (GS) based system to address these challenges: We first break down sensor simulator components and analyze the possible advantages of GS over NeRF. Then in practice, we refactor three crucial components through GS, to leverage its explicit scene representation and real-time rendering: (1) choosing the 2D neural Gaussian representation for physics-compliant scene and sensor modeling, (2) proposing a scene editing pipeline to leverage Gaussian primitives library for data augmentation, and (3) coupling a controllable diffusion model for scene expansion and harmonization. We implement this framework on a proprietary autonomous driving dataset supporting cameras and LiDAR sensors. We demonstrate through ablation studies that our approach reduces frame-wise simulation latency, achieves better geometric and photometric consistency, and enables interpretable explicit scene editing and expansion. Furthermore, we showcase how integrating such a GS-based sensor simulator with traffic and dynamic simulators enables full-stack testing of end-to-end autonomy algorithms. Our work provides both algorithmic insights and practical validation, establishing GS as a cornerstone for industrial-grade sensor simulation.


ASMA-Tune: Unlocking LLMs' Assembly Code Comprehension via Structural-Semantic Instruction Tuning

arXiv.org Artificial Intelligence

Analysis and comprehension of assembly code are crucial in various applications, such as reverse engineering. However, the low information density and lack of explicit syntactic structures in assembly code pose significant challenges. Pioneering approaches with masked language modeling (MLM)-based methods have been limited by facilitating natural language interaction. While recent methods based on decoder-focused large language models (LLMs) have significantly enhanced semantic representation, they still struggle to capture the nuanced and sparse semantics in assembly code. In this paper, we propose Assembly Augmented Tuning (ASMA-Tune), an end-to-end structural-semantic instruction-tuning framework. Our approach synergizes encoder architectures with decoder-based LLMs through projector modules to enable comprehensive code understanding. Experiments show that ASMA-Tune outperforms existing benchmarks, significantly enhancing assembly code comprehension and instruction-following abilities. Our model and dataset are public at https://github.com/wxy3596/ASMA-Tune.


CombatVLA: An Efficient Vision-Language-Action Model for Combat Tasks in 3D Action Role-Playing Games

arXiv.org Artificial Intelligence

Recent advances in Vision-Language-Action models (VLAs) have expanded the capabilities of embodied intelligence. However, significant challenges remain in real-time decision-making in complex 3D environments, which demand second-level responses, high-resolution perception, and tactical reasoning under dynamic conditions. To advance the field, we introduce CombatVLA, an efficient VLA model optimized for combat tasks in 3D action role-playing games(ARPGs). Specifically, our CombatVLA is a 3B model trained on video-action pairs collected by an action tracker, where the data is formatted as action-of-thought (AoT) sequences. Thereafter, CombatVLA seamlessly integrates into an action execution framework, allowing efficient inference through our truncated AoT strategy. Experimental results demonstrate that CombatVLA not only outperforms all existing models on the combat understanding benchmark but also achieves a 50-fold acceleration in game combat. Moreover, it has a higher task success rate than human players. We will open-source all resources, including the action tracker, dataset, benchmark, model weights, training code, and the implementation of the framework at https://combatvla.github.io/.


A Dynamic and High-Precision Method for Scenario-Based HRA Synthetic Data Collection in Multi-Agent Collaborative Environments Driven by LLMs

arXiv.org Artificial Intelligence

HRA (Human Reliability Analysis) data is crucial for advancing HRA methodologies. however, existing data collection methods lack the necessary granularity, and most approaches fail to capture dynamic features. Additionally, many methods require expert knowledge as input, making them time-consuming and labor-intensive. To address these challenges, we propose a new paradigm for the automated collection of HRA data. Our approach focuses on key indicators behind human error, specifically measuring workload in collaborative settings. This study introduces a novel, scenario-driven method for workload estimation, leveraging fine-tuned large language models (LLMs). By training LLMs on real-world operational data from high-temperature gas-cooled reactors (HTGRs), we simulate human behavior and cognitive load in real time across various collaborative scenarios. The method dynamically adapts to changes in operator workload, providing more accurate, flexible, and scalable workload estimates. The results demonstrate that the proposed WELLA (Workload Estimation with LLMs and Agents) outperforms existing commercial LLM-based methods in terms of prediction accuracy.


A Novel Task-Driven Method with Evolvable Interactive Agents Using Event Trees for Enhanced Emergency Decision Support

arXiv.org Artificial Intelligence

As climate change and other global challenges increase the likelihood of unforeseen emergencies, the limitations of human-driven strategies in critical situations become more pronounced. Inadequate pre-established emergency plans can lead operators to become overwhelmed during complex systems malfunctions. This study addresses the urgent need for agile decision-making in response to various unforeseen incidents through a novel approach, EvoTaskTree (a task-driven method with evolvable interactive agents using event trees for emergency decision support). This advanced approach integrates two types of agents powered by large language models (LLMs): task executors, responsible for executing critical procedures, and task validators, ensuring the efficacy of those actions. By leveraging insights from event tree analysis, our framework encompasses three crucial tasks: initiating event subevent analysis, event tree header event analysis, and decision recommendations. The agents learn from both successful and unsuccessful responses from these tasks. Finally, we use nuclear power plants as a demonstration of a safety-critical system. Our findings indicate that the designed agents are not only effective but also outperform existing approaches, achieving an impressive accuracy rate of up to 100 % in processing previously unencoun32 tered incident scenarios. This paper demonstrates that EvoTaskTree significantly enhances the rapid formulation of emergency decision-making.


KRAIL: A Knowledge-Driven Framework for Base Human Reliability Analysis Integrating IDHEAS and Large Language Models

arXiv.org Artificial Intelligence

Human reliability analysis (HRA) is crucial for evaluating and improving the safety of complex systems. Recent efforts have focused on estimating human error probability (HEP), but existing methods often rely heavily on expert knowledge,which can be subjective and time-consuming. Inspired by the success of large language models (LLMs) in natural language processing, this paper introduces a novel two-stage framework for knowledge-driven reliability analysis, integrating IDHEAS and LLMs (KRAIL). This innovative framework enables the semi-automated computation of base HEP values. Additionally, knowledge graphs are utilized as a form of retrieval-augmented generation (RAG) for enhancing the framework' s capability to retrieve and process relevant data efficiently. Experiments are systematically conducted and evaluated on authoritative datasets of human reliability. The experimental results of the proposed methodology demonstrate its superior performance on base HEP estimation under partial information for reliability assessment.


A Hybrid Real-Time Framework for Efficient Fussell-Vesely Importance Evaluation Using Virtual Fault Trees and Graph Neural Networks

arXiv.org Artificial Intelligence

The Fussell-Vesely Importance (FV) reflects the potential impact of a basic event on system failure, and is crucial for ensuring system reliability. However, traditional methods for calculating FV importance are complex and time-consuming, requiring the construction of fault trees and the calculation of minimal cut set. To address these limitations, this study proposes a hybrid real-time framework to evaluate the FV importance of basic events. Our framework combines expert knowledge with a data-driven model. First, we use Interpretive Structural Modeling (ISM) to build a virtual fault tree that captures the relationships between basic events. Unlike traditional fault trees, which include intermediate events, our virtual fault tree consists solely of basic events, reducing its complexity and space requirements. Additionally, our virtual fault tree considers the dependencies between basic events rather than assuming their independence, as is typically done in traditional fault trees. We then feed both the event relationships and relevant data into a graph neural network (GNN). This approach enables a rapid, data-driven calculation of FV importance, significantly reducing processing time and quickly identifying critical events, thus providing robust decision support for risk control. Results demonstrate that our model performs well in terms of MSE, RMSE, MAE, and R2, reducing computational energy consumption and offering real-time, risk-informed decision support for complex systems.


DataLab: A Unified Platform for LLM-Powered Business Intelligence

arXiv.org Artificial Intelligence

Business intelligence (BI) transforms large volumes of data within modern organizations into actionable insights for informed decision-making. Recently, large language model (LLM)-based agents have streamlined the BI workflow by automatically performing task planning, reasoning, and actions in executable environments based on natural language (NL) queries. However, existing approaches primarily focus on individual BI tasks such as NL2SQL and NL2VIS. The fragmentation of tasks across different data roles and tools lead to inefficiencies and potential errors due to the iterative and collaborative nature of BI. In this paper, we introduce DataLab, a unified BI platform that integrates a one-stop LLM-based agent framework with an augmented computational notebook interface. DataLab supports a wide range of BI tasks for different data roles by seamlessly combining LLM assistance with user customization within a single environment. To achieve this unification, we design a domain knowledge incorporation module tailored for enterprise-specific BI tasks, an inter-agent communication mechanism to facilitate information sharing across the BI workflow, and a cell-based context management strategy to enhance context utilization efficiency in BI notebooks. Extensive experiments demonstrate that DataLab achieves state-of-the-art performance on various BI tasks across popular research benchmarks. Moreover, DataLab maintains high effectiveness and efficiency on real-world datasets from Tencent, achieving up to a 58.58% increase in accuracy and a 61.65% reduction in token cost on enterprise-specific BI tasks.


LD-EnSF: Synergizing Latent Dynamics with Ensemble Score Filters for Fast Data Assimilation with Sparse Observations

arXiv.org Machine Learning

Data assimilation techniques are crucial for correcting the trajectory when modeling complex physical systems. A recently developed data assimilation method, Latent Ensemble Score Filter (Latent-EnSF), has shown great promise in addressing the key limitation of EnSF for highly sparse observations in high-dimensional and nonlinear data assimilation problems. It performs data assimilation in a latent space for encoded states and observations in every assimilation step, and requires costly full dynamics to be evolved in the original space. In this paper, we introduce Latent Dynamics EnSF (LD-EnSF), a novel methodology that completely avoids the full dynamics evolution and significantly accelerates the data assimilation process, which is especially valuable for complex dynamical problems that require fast data assimilation in real time. To accomplish this, we introduce a novel variant of Latent Dynamics Networks (LDNets) to effectively capture and preserve the system's dynamics within a very low-dimensional latent space. Additionally, we propose a new method for encoding sparse observations into the latent space using Long Short-Term Memory (LSTM) networks, which leverage not only the current step's observations, as in Latent-EnSF, but also all previous steps, thereby improving the accuracy and robustness of the observation encoding. We demonstrate the robustness, accuracy, and efficiency of the proposed method for two challenging dynamical systems with highly sparse (in both space and time) and noisy observations.