Chen, Muhao
MetaScale: Test-Time Scaling with Evolving Meta-Thoughts
Liu, Qin, Zhou, Wenxuan, Xu, Nan, Huang, James Y., Wang, Fei, Zhang, Sheng, Poon, Hoifung, Chen, Muhao
One critical challenge for large language models (LLMs) for making complex reasoning is their reliance on matching reasoning patterns from training data, instead of proactively selecting the most appropriate cognitive strategy to solve a given task. Existing approaches impose fixed cognitive structures that enhance performance in specific tasks but lack adaptability across diverse scenarios. To address this limitation, we introduce METASCALE, a test-time scaling framework based on meta-thoughts -- adaptive thinking strategies tailored to each task. METASCALE initializes a pool of candidate meta-thoughts, then iteratively selects and evaluates them using a multi-armed bandit algorithm with upper confidence bound selection, guided by a reward model. To further enhance adaptability, a genetic algorithm evolves high-reward meta-thoughts, refining and extending the strategy pool over time. By dynamically proposing and optimizing meta-thoughts at inference time, METASCALE improves both accuracy and generalization across a wide range of tasks. Experimental results demonstrate that MetaScale consistently outperforms standard inference approaches, achieving an 11% performance gain in win rate on Arena-Hard for GPT-4o, surpassing o1-mini by 0.9% under style control. Notably, METASCALE scales more effectively with increasing sampling budgets and produces more structured, expert-level responses.
Semantic-Clipping: Efficient Vision-Language Modeling with Semantic-Guidedd Visual Selection
Li, Bangzheng, Wang, Fei, Zhou, Wenxuan, Xu, Nan, Zhou, Ben, Zhang, Sheng, Poon, Hoifung, Chen, Muhao
Vision-Language Models (VLMs) leverage aligned visual encoders to transform images into visual tokens, allowing them to be processed similarly to text by the backbone large language model (LLM). This unified input paradigm enables VLMs to excel in vision-language tasks such as visual question answering (VQA). To improve fine-grained visual reasoning, recent advancements in vision-language modeling introduce image cropping techniques that feed all encoded sub-images into the model. However, this approach significantly increases the number of visual tokens, leading to inefficiency and potential distractions for the LLM. To address the generalization challenges of image representation in VLMs, we propose a lightweight, universal framework that seamlessly integrates with existing VLMs to enhance their ability to process finegrained details. Our method leverages textual semantics to identify key visual areas, improving VQA performance without requiring any retraining of the VLM. Additionally, it incorporates textual signals into the visual encoding process, enhancing both efficiency and effectiveness. The proposed method, SEMCLIP, strengthens the visual understanding of a 7B VLM, LLaVA-1.5 by 3.3% on average across 7 benchmarks, and particularly by 5.3% on the challenging detailed understanding benchmark V*.
MapQA: Open-domain Geospatial Question Answering on Map Data
Li, Zekun, Grossman, Malcolm, Eric, null, Qasemi, null, Kulkarni, Mihir, Chen, Muhao, Chiang, Yao-Yi
Geospatial question answering (QA) is a fundamental task in navigation and point of interest (POI) searches. While existing geospatial QA datasets exist, they are limited in both scale and diversity, often relying solely on textual descriptions of geo-entities without considering their geometries. A major challenge in scaling geospatial QA datasets for reasoning lies in the complexity of geospatial relationships, which require integrating spatial structures, topological dependencies, and multi-hop reasoning capabilities that most text-based QA datasets lack. To address these limitations, we introduce MapQA, a novel dataset that not only provides question-answer pairs but also includes the geometries of geo-entities referenced in the questions. MapQA is constructed using SQL query templates to extract question-answer pairs from OpenStreetMap (OSM) for two study regions: Southern California and Illinois. It consists of 3,154 QA pairs spanning nine question types that require geospatial reasoning, such as neighborhood inference and geo-entity type identification. Compared to existing datasets, MapQA expands both the number and diversity of geospatial question types. We explore two approaches to tackle this challenge: (1) a retrieval-based language model that ranks candidate geo-entities by embedding similarity, and (2) a large language model (LLM) that generates SQL queries from natural language questions and geo-entity attributes, which are then executed against an OSM database. Our findings indicate that retrieval-based methods effectively capture concepts like closeness and direction but struggle with questions that require explicit computations (e.g., distance calculations). LLMs (e.g., GPT and Gemini) excel at generating SQL queries for one-hop reasoning but face challenges with multi-hop reasoning, highlighting a key bottleneck in advancing geospatial QA systems.
BadJudge: Backdoor Vulnerabilities of LLM-as-a-Judge
Tong, Terry, Wang, Fei, Zhao, Zhe, Chen, Muhao
This paper proposes a novel backdoor threat attacking the LLM-as-a-Judge evaluation regime, where the adversary controls both the candidate and evaluator model. The backdoored evaluator victimizes benign users by unfairly assigning inflated scores to adversary. A trivial single token backdoor poisoning 1% of the evaluator training data triples the adversary's score with respect to their legitimate score. We systematically categorize levels of data access corresponding to three real-world settings, (1) web poisoning, (2) malicious annotator, and (3) weight poisoning. These regimes reflect a weak to strong escalation of data access that highly correlates with attack severity. Under the weakest assumptions - web poisoning (1), the adversary still induces a 20% score inflation. Likewise, in the (3) weight poisoning regime, the stronger assumptions enable the adversary to inflate their scores from 1.5/5 to 4.9/5. The backdoor threat generalizes across different evaluator architectures, trigger designs, evaluation tasks, and poisoning rates. By poisoning 10% of the evaluator training data, we control toxicity judges (Guardrails) to misclassify toxic prompts as non-toxic 89% of the time, and document reranker judges in RAG to rank the poisoned document first 97% of the time. LLM-as-a-Judge is uniquely positioned at the intersection of ethics and technology, where social implications of mislead model selection and evaluation constrain the available defensive tools. Amidst these challenges, model merging emerges as a principled tool to offset the backdoor, reducing ASR to near 0% whilst maintaining SOTA performance. Model merging's low computational cost and convenient integration into the current LLM Judge training pipeline position it as a promising avenue for backdoor mitigation in the LLM-as-a-Judge setting.
ThinkGuard: Deliberative Slow Thinking Leads to Cautious Guardrails
Wen, Xiaofei, Zhou, Wenxuan, Mo, Wenjie Jacky, Chen, Muhao
Ensuring the safety of large language models (LLMs) is critical as they are deployed in real-world applications. Existing guardrails rely on rule-based filtering or single-pass classification, limiting their ability to handle nuanced safety violations. To address this, we propose ThinkGuard, a critique-augmented guardrail model that distills knowledge from high-capacity LLMs by generating structured critiques alongside safety labels. Fine-tuned on critique-augmented data, the captured deliberative thinking ability drastically enhances the guardrail's cautiousness and interpretability. Evaluated on multiple safety benchmarks, ThinkGuard achieves the highest average F1 and AUPRC, outperforming all baselines. Compared to LLaMA Guard 3, ThinkGuard improves accuracy by 16.1% and macro F1 by 27.0%. Moreover, it surpasses label-only fine-tuned models, confirming that structured critiques enhance both classification precision and nuanced safety reasoning while maintaining computational efficiency.
AGrail: A Lifelong Agent Guardrail with Effective and Adaptive Safety Detection
Luo, Weidi, Dai, Shenghong, Liu, Xiaogeng, Banerjee, Suman, Sun, Huan, Chen, Muhao, Xiao, Chaowei
The rapid advancements in Large Language Models (LLMs) have enabled their deployment as autonomous agents for handling complex tasks in dynamic environments. These LLMs demonstrate strong problem-solving capabilities and adaptability to multifaceted scenarios. However, their use as agents also introduces significant risks, including task-specific risks, which are identified by the agent administrator based on the specific task requirements and constraints, and systemic risks, which stem from vulnerabilities in their design or interactions, potentially compromising confidentiality, integrity, or availability (CIA) of information and triggering security risks. Existing defense agencies fail to adaptively and effectively mitigate these risks. In this paper, we propose AGrail, a lifelong agent guardrail to enhance LLM agent safety, which features adaptive safety check generation, effective safety check optimization, and tool compatibility and flexibility. Extensive experiments demonstrate that AGrail not only achieves strong performance against task-specific and system risks but also exhibits transferability across different LLM agents' tasks.
VLM-Guard: Safeguarding Vision-Language Models via Fulfilling Safety Alignment Gap
Liu, Qin, Wang, Fei, Xiao, Chaowei, Chen, Muhao
The emergence of vision language models (VLMs) comes with increased safety concerns, as the incorporation of multiple modalities heightens vulnerability to attacks. Although VLMs can be built upon LLMs that have textual safety alignment, it is easily undermined when the vision modality is integrated. We attribute this safety challenge to the modality gap, a separation of image and text in the shared representation space, which blurs the distinction between harmful and harmless queries that is evident in LLMs but weakened in VLMs. To avoid safety decay and fulfill the safety alignment gap, we propose VLM-Guard, an inference-time intervention strategy that leverages the LLM component of a VLM as supervision for the safety alignment of the VLM. VLM-Guard projects the representations of VLM into the subspace that is orthogonal to the safety steering direction that is extracted from the safety-aligned LLM. Experimental results on three malicious instruction settings show the effectiveness of VLM-Guard in safeguarding VLM and fulfilling the safety alignment gap between VLM and its LLM component.
R2D2: Remembering, Reflecting and Dynamic Decision Making for Web Agents
Huang, Tenghao, Basu, Kinjal, Abdelaziz, Ibrahim, Kapanipathi, Pavan, May, Jonathan, Chen, Muhao
The proliferation of web agents necessitates advanced navigation and interaction strategies within complex web environments. Current models often struggle with efficient navigation and action execution due to limited visibility and understanding of web structures. Our proposed R2D2 framework addresses these challenges by integrating two paradigms: Remember and Reflect. The Remember paradigm utilizes a replay buffer that aids agents in reconstructing the web environment dynamically, thus enabling the formulation of a detailed ``map'' of previously visited pages. This helps in reducing navigational errors and optimizing the decision-making process during web interactions. Conversely, the Reflect paradigm allows agents to learn from past mistakes by providing a mechanism for error analysis and strategy refinement, enhancing overall task performance. We evaluate R2D2 using the WEBARENA benchmark, demonstrating significant improvements over existing methods, including a 50% reduction in navigation errors and a threefold increase in task completion rates. Our findings suggest that a combination of memory-enhanced navigation and reflective learning promisingly advances the capabilities of web agents, potentially benefiting various applications such as automated customer service and personal digital assistants.
Unraveling Indirect In-Context Learning Using Influence Functions
Askari, Hadi, Gupta, Shivanshu, Tong, Terry, Wang, Fei, Chhabra, Anshuman, Chen, Muhao
This work introduces a novel paradigm for generalized In-Context Learning (ICL), termed Indirect In-Context Learning. In Indirect ICL, we explore demonstration selection strategies tailored for two distinct real-world scenarios: Mixture of Tasks and Noisy Demonstrations. We systematically evaluate the effectiveness of Influence Functions (IFs) as a selection tool for these settings, highlighting the potential for IFs to better capture the informativeness of examples within the demonstration pool. For the Mixture of Tasks setting, demonstrations are drawn from 28 diverse tasks, including MMLU, BigBench, StrategyQA, and CommonsenseQA. We demonstrate that combining BertScore-Recall (BSR) with an IF surrogate model can significantly improve performance, leading to average absolute accuracy gains of 0.37\% and 1.45\% for 3-shot and 5-shot setups when compared to traditional ICL metrics. In the Noisy Demonstrations setting, we examine scenarios where demonstrations might be mislabeled. Our experiments show that reweighting traditional ICL selectors (BSR and Cosine Similarity) with IF-based selectors boosts accuracy by an average of 2.90\% for Cosine Similarity and 2.94\% for BSR on noisy GLUE benchmarks. In sum, we propose a robust framework for demonstration selection that generalizes beyond traditional ICL, offering valuable insights into the role of IFs for Indirect ICL.
MetaScientist: A Human-AI Synergistic Framework for Automated Mechanical Metamaterial Design
Qi, Jingyuan, Jia, Zian, Liu, Minqian, Zhan, Wangzhi, Zhang, Junkai, Wen, Xiaofei, Gan, Jingru, Chen, Jianpeng, Liu, Qin, Ma, Mingyu Derek, Li, Bangzheng, Wang, Haohui, Kulkarni, Adithya, Chen, Muhao, Zhou, Dawei, Li, Ling, Wang, Wei, Huang, Lifu
The discovery of novel mechanical metamaterials, whose properties are dominated by their engineered structures rather than chemical composition, is a knowledge-intensive and resource-demanding process. To accelerate the design of novel metamaterials, we present MetaScientist, a human-in-the-loop system that integrates advanced AI capabilities with expert oversight with two primary phases: (1) hypothesis generation, where the system performs complex reasoning to generate novel and scientifically sound hypotheses, supported with domain-specific foundation models and inductive biases retrieved from existing literature; (2) 3D structure synthesis, where a 3D structure is synthesized with a novel 3D diffusion model based on the textual hypothesis and refined it with a LLM-based refinement model to achieve better structure properties. At each phase, domain experts iteratively validate the system outputs, and provide feedback and supplementary materials to ensure the alignment of the outputs with scientific principles and human preferences. Through extensive evaluation from human scientists, MetaScientist is able to deliver novel and valid mechanical metamaterial designs that have the potential to be highly impactful in the metamaterial field.