Goto

Collaborating Authors

 Chen, Minshuo


On Statistical Rates of Conditional Diffusion Transformers: Approximation, Estimation and Minimax Optimality

arXiv.org Machine Learning

We investigate the approximation and estimation rates of conditional diffusion transformers (DiTs) with classifier-free guidance. We present a comprehensive analysis for ``in-context'' conditional DiTs under four common data assumptions. We show that both conditional DiTs and their latent variants lead to the minimax optimality of unconditional DiTs under identified settings. Specifically, we discretize the input domains into infinitesimal grids and then perform a term-by-term Taylor expansion on the conditional diffusion score function under H\"older smooth data assumption. This enables fine-grained use of transformers' universal approximation through a more detailed piecewise constant approximation and hence obtains tighter bounds. Additionally, we extend our analysis to the latent setting under the linear latent subspace assumption. We not only show that latent conditional DiTs achieve lower bounds than conditional DiTs both in approximation and estimation, but also show the minimax optimality of latent unconditional DiTs. Our findings establish statistical limits for conditional and unconditional DiTs, and offer practical guidance toward developing more efficient and accurate DiT models.


A Theoretical Perspective for Speculative Decoding Algorithm

arXiv.org Machine Learning

Transformer-based autoregressive sampling has been the major bottleneck for slowing down large language model inferences. One effective way to accelerate inference is \emph{Speculative Decoding}, which employs a small model to sample a sequence of draft tokens and a large model to validate. Given its empirical effectiveness, the theoretical understanding of Speculative Decoding is falling behind. This paper tackles this gap by conceptualizing the decoding problem via markov chain abstraction and studying the key properties, \emph{output quality and inference acceleration}, from a theoretical perspective. Our analysis covers the theoretical limits of speculative decoding, batch algorithms, and output quality-inference acceleration tradeoffs. Our results reveal the fundamental connections between different components of LLMs via total variation distances and show how they jointly affect the efficiency of decoding algorithms.


Gradient Guidance for Diffusion Models: An Optimization Perspective

arXiv.org Machine Learning

Diffusion models have demonstrated empirical successes in various applications and can be adapted to task-specific needs via guidance. This paper introduces a form of gradient guidance for adapting or fine-tuning diffusion models towards user-specified optimization objectives. We study the theoretic aspects of a guided score-based sampling process, linking the gradient-guided diffusion model to first-order optimization. We show that adding gradient guidance to the sampling process of a pre-trained diffusion model is essentially equivalent to solving a regularized optimization problem, where the regularization term acts as a prior determined by the pre-training data. Diffusion models are able to learn data's latent subspace, however, explicitly adding the gradient of an external objective function to the sample process would jeopardize the structure in generated samples. To remedy this issue, we consider a modified form of gradient guidance based on a forward prediction loss, which leverages the pre-trained score function to preserve the latent structure in generated samples. We further consider an iteratively fine-tuned version of gradient-guided diffusion where one can query gradients at newly generated data points and update the score network using new samples. This process mimics a first-order optimization iteration in expectation, for which we proved O(1/K) convergence rate to the global optimum when the objective function is concave.


An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization

arXiv.org Machine Learning

Diffusion models, a powerful and universal generative AI technology, have achieved tremendous success in computer vision, audio, reinforcement learning, and computational biology. In these applications, diffusion models provide flexible high-dimensional data modeling, and act as a sampler for generating new samples under active guidance towards task-desired properties. Despite the significant empirical success, theory of diffusion models is very limited, potentially slowing down principled methodological innovations for further harnessing and improving diffusion models. In this paper, we review emerging applications of diffusion models, understanding their sample generation under various controls. Next, we overview the existing theories of diffusion models, covering their statistical properties and sampling capabilities. We adopt a progressive routine, beginning with unconditional diffusion models and connecting to conditional counterparts. Further, we review a new avenue in high-dimensional structured optimization through conditional diffusion models, where searching for solutions is reformulated as a conditional sampling problem and solved by diffusion models. Lastly, we discuss future directions about diffusion models. The purpose of this paper is to provide a well-rounded theoretical exposure for stimulating forward-looking theories and methods of diffusion models.


Diffusion Model for Data-Driven Black-Box Optimization

arXiv.org Artificial Intelligence

Generative AI has redefined artificial intelligence, enabling the creation of innovative content and customized solutions that drive business practices into a new era of efficiency and creativity. In this paper, we focus on diffusion models, a powerful generative AI technology, and investigate their potential for black-box optimization over complex structured variables. Consider the practical scenario where one wants to optimize some structured design in a high-dimensional space, based on massive unlabeled data (representing design variables) and a small labeled dataset. We study two practical types of labels: 1) noisy measurements of a real-valued reward function and 2) human preference based on pairwise comparisons. The goal is to generate new designs that are near-optimal and preserve the designed latent structures. Our proposed method reformulates the design optimization problem into a conditional sampling problem, which allows us to leverage the power of diffusion models for modeling complex distributions. In particular, we propose a reward-directed conditional diffusion model, to be trained on the mixed data, for sampling a near-optimal solution conditioned on high predicted rewards. Theoretically, we establish sub-optimality error bounds for the generated designs. The sub-optimality gap nearly matches the optimal guarantee in off-policy bandits, demonstrating the efficiency of reward-directed diffusion models for black-box optimization. Moreover, when the data admits a low-dimensional latent subspace structure, our model efficiently generates high-fidelity designs that closely respect the latent structure. We provide empirical experiments validating our model in decision-making and content-creation tasks.


Unveil Conditional Diffusion Models with Classifier-free Guidance: A Sharp Statistical Theory

arXiv.org Artificial Intelligence

Conditional diffusion models serve as the foundation of modern image synthesis and find extensive application in fields like computational biology and reinforcement learning. In these applications, conditional diffusion models incorporate various conditional information, such as prompt input, to guide the sample generation towards desired properties. Despite the empirical success, theory of conditional diffusion models is largely missing. This paper bridges this gap by presenting a sharp statistical theory of distribution estimation using conditional diffusion models. Our analysis yields a sample complexity bound that adapts to the smoothness of the data distribution and matches the minimax lower bound. The key to our theoretical development lies in an approximation result for the conditional score function, which relies on a novel diffused Taylor approximation technique. Moreover, we demonstrate the utility of our statistical theory in elucidating the performance of conditional diffusion models across diverse applications, including model-based transition kernel estimation in reinforcement learning, solving inverse problems, and reward conditioned sample generation.


Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian Mixture Models

arXiv.org Machine Learning

Diffusion models benefit from instillation of task-specific information into the score function to steer the sample generation towards desired properties. Such information is coined as guidance. For example, in text-to-image synthesis, text input is encoded as guidance to generate semantically aligned images. Proper guidance inputs are closely tied to the performance of diffusion models. A common observation is that strong guidance promotes a tight alignment to the task-specific information, while reducing the diversity of the generated samples. In this paper, we provide the first theoretical study towards understanding the influence of guidance on diffusion models in the context of Gaussian mixture models. Under mild conditions, we prove that incorporating diffusion guidance not only boosts classification confidence but also diminishes distribution diversity, leading to a reduction in the differential entropy of the output distribution. Our analysis covers the widely adopted sampling schemes including DDPM and DDIM, and leverages comparison inequalities for differential equations as well as the Fokker-Planck equation that characterizes the evolution of probability density function, which may be of independent theoretical interest.


AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning

arXiv.org Artificial Intelligence

Fine-tuning large pre-trained language models on downstream tasks has become an important paradigm in NLP. However, common practice fine-tunes all of the parameters in a pre-trained model, which becomes prohibitive when a large number of downstream tasks are present. Therefore, many fine-tuning methods are proposed to learn incremental updates of pre-trained weights in a parameter efficient way, e.g., low-rank increments. These methods often evenly distribute the budget of incremental updates across all pre-trained weight matrices, and overlook the varying importance of different weight parameters. As a consequence, the fine-tuning performance is suboptimal. To bridge this gap, we propose AdaLoRA, which adaptively allocates the parameter budget among weight matrices according to their importance score. In particular, AdaLoRA parameterizes the incremental updates in the form of singular value decomposition. Such a novel approach allows us to effectively prune the singular values of unimportant updates, which is essentially to reduce their parameter budget but circumvent intensive exact SVD computations. We conduct extensive experiments with several pre-trained models on natural language processing, question answering, and natural language generation to validate the effectiveness of AdaLoRA. Results demonstrate that AdaLoRA manifests notable improvement over baselines, especially in the low budget settings. Our code is publicly available at https://github.com/QingruZhang/AdaLoRA .


Provable Benefits of Policy Learning from Human Preferences in Contextual Bandit Problems

arXiv.org Machine Learning

For a real-world decision-making problem, the reward function often needs to be engineered or learned. A popular approach is to utilize human feedback to learn a reward function for training. The most straightforward way to do so is to ask humans to provide ratings for state-action pairs on an absolute scale and take these ratings as reward samples directly. Another popular way is to ask humans to rank a small set of state-action pairs by preference and learn a reward function from these preference data. Recently, preference-based methods have demonstrated substantial success in empirical applications such as InstructGPT. In this work, we develop a theoretical comparison between these human feedback approaches in offline contextual bandits and show how human bias and uncertainty in feedback modelings can affect the theoretical guarantees of these approaches. Through this, our results seek to provide a theoretical explanation for the empirical successes of preference-based methods from a modeling perspective.


Efficient Reinforcement Learning with Impaired Observability: Learning to Act with Delayed and Missing State Observations

arXiv.org Artificial Intelligence

In real-world reinforcement learning (RL) systems, various forms of {\it impaired observability} can complicate matters. These situations arise when an agent is unable to observe the most recent state of the system due to latency or lossy channels, yet the agent must still make real-time decisions. This paper introduces a theoretical investigation into efficient RL in control systems where agents must act with delayed and missing state observations. We present algorithms and establish near-optimal regret upper and lower bounds, of the form $\tilde{\mathcal{O}}(\sqrt{{\rm poly}(H) SAK})$, for RL in the delayed and missing observation settings. Here $S$ and $A$ are the sizes of state and action spaces, $H$ is the time horizon and $K$ is the number of episodes. Despite impaired observability posing significant challenges to the policy class and planning, our results demonstrate that learning remains efficient, with the regret bound optimally depending on the state-action size of the original system. Additionally, we provide a characterization of the performance of the optimal policy under impaired observability, comparing it to the optimal value obtained with full observability. Numerical results are provided to support our theory.