Goto

Collaborating Authors

 Chen, L.


Towards Explainable and Safe Conversational Agents for Mental Health: A Survey

arXiv.org Artificial Intelligence

Virtual Mental Health Assistants (VMHAs) are seeing continual advancements to support the overburdened global healthcare system that gets 60 million primary care visits, and 6 million Emergency Room (ER) visits annually. These systems are built by clinical psychologists, psychiatrists, and Artificial Intelligence (AI) researchers for Cognitive Behavioral Therapy (CBT). At present, the role of VMHAs is to provide emotional support through information, focusing less on developing a reflective conversation with the patient. A more comprehensive, safe and explainable approach is required to build responsible VMHAs to ask follow-up questions or provide a well-informed response. This survey offers a systematic critical review of the existing conversational agents in mental health, followed by new insights into the improvements of VMHAs with contextual knowledge, datasets, and their emerging role in clinical decision support. We also provide new directions toward enriching the user experience of VMHAs with explainability, safety, and wholesome trustworthiness. Finally, we provide evaluation metrics and practical considerations for VMHAs beyond the current literature to build trust between VMHAs and patients in active communications.


Vertex nomination schemes for membership prediction

arXiv.org Machine Learning

Suppose that a graph is realized from a stochastic block model where one of the blocks is of interest, but many or all of the vertices' block labels are unobserved. The task is to order the vertices with unobserved block labels into a ``nomination list'' such that, with high probability, vertices from the interesting block are concentrated near the list's beginning. We propose several vertex nomination schemes. Our basic - but principled - setting and development yields a best nomination scheme (which is a Bayes-Optimal analogue), and also a likelihood maximization nomination scheme that is practical to implement when there are a thousand vertices, and which is empirically near-optimal when the number of vertices is small enough to allow comparison to the best nomination scheme. We then illustrate the robustness of the likelihood maximization nomination scheme to the modeling challenges inherent in real data, using examples which include a social network involving human trafficking, the Enron Graph, a worm brain connectome and a political blog network.