Goto

Collaborating Authors

 Chen, Junhao


States Hidden in Hidden States: LLMs Emerge Discrete State Representations Implicitly

arXiv.org Artificial Intelligence

Large Language Models (LLMs) exhibit various emergent abilities. Among these abilities, some might reveal the internal working mechanisms of models. In this paper, we uncover a novel emergent capability in models: the intrinsic ability to perform extended sequences of calculations without relying on chain-of-thought step-by-step solutions. Remarkably, the most advanced models can directly output the results of two-digit number additions with lengths extending up to 15 addends. We hypothesize that the model emerges Implicit Discrete State Representations (IDSRs) within its hidden states and performs symbolic calculations internally. To test this hypothesis, we design a sequence of experiments that look into the hidden states. Specifically, we first confirm that IDSRs exist. Then, we provide interesting observations about the formation of IDSRs from layer, digit, and sequence perspectives. Finally, we confirm that models indeed use IDSRs to produce the final answers. However, we also discover that these state representations are far from lossless in current open-sourced models, leading to inaccuracies in their final performance. Our work presents a novel exploration of LLMs' symbolic calculation abilities and the underlying mechanisms.


NTIRE 2024 Challenge on Short-form UGC Video Quality Assessment: Methods and Results

arXiv.org Artificial Intelligence

This paper reviews the NTIRE 2024 Challenge on Shortform UGC Video Quality Assessment (S-UGC VQA), where various excellent solutions are submitted and evaluated on the collected dataset KVQ from popular short-form video platform, i.e., Kuaishou/Kwai Platform. The KVQ database is divided into three parts, including 2926 videos for training, 420 videos for validation, and 854 videos for testing. The purpose is to build new benchmarks and advance the development of S-UGC VQA. The competition had 200 participants and 13 teams submitted valid solutions for the final testing phase. The proposed solutions achieved state-of-the-art performances for S-UGC VQA. The project can be found at https://github.com/lixinustc/KVQChallenge-CVPR-NTIRE2024.


Ultraman: Single Image 3D Human Reconstruction with Ultra Speed and Detail

arXiv.org Artificial Intelligence

3D human body reconstruction has been a challenge in the field of computer vision. Previous methods are often time-consuming and difficult to capture the detailed appearance of the human body. In this paper, we propose a new method called \emph{Ultraman} for fast reconstruction of textured 3D human models from a single image. Compared to existing techniques, \emph{Ultraman} greatly improves the reconstruction speed and accuracy while preserving high-quality texture details. We present a set of new frameworks for human reconstruction consisting of three parts, geometric reconstruction, texture generation and texture mapping. Firstly, a mesh reconstruction framework is used, which accurately extracts 3D human shapes from a single image. At the same time, we propose a method to generate a multi-view consistent image of the human body based on a single image. This is finally combined with a novel texture mapping method to optimize texture details and ensure color consistency during reconstruction. Through extensive experiments and evaluations, we demonstrate the superior performance of \emph{Ultraman} on various standard datasets. In addition, \emph{Ultraman} outperforms state-of-the-art methods in terms of human rendering quality and speed. Upon acceptance of the article, we will make the code and data publicly available.


$\infty$Bench: Extending Long Context Evaluation Beyond 100K Tokens

arXiv.org Artificial Intelligence

Processing and reasoning over long contexts is crucial for many practical applications of Large Language Models (LLMs), such as document comprehension and agent construction. Despite recent strides in making LLMs process contexts with more than 100K tokens, there is currently a lack of a standardized benchmark to evaluate this long-context capability. Existing public benchmarks typically focus on contexts around 10K tokens, limiting the assessment and comparison of LLMs in processing longer contexts. In this paper, we propose $\infty$Bench, the first LLM benchmark featuring an average data length surpassing 100K tokens. $\infty$Bench comprises synthetic and realistic tasks spanning diverse domains, presented in both English and Chinese. The tasks in $\infty$Bench are designed to require well understanding of long dependencies in contexts, and make simply retrieving a limited number of passages from contexts not sufficient for these tasks. In our experiments, based on $\infty$Bench, we evaluate the state-of-the-art proprietary and open-source LLMs tailored for processing long contexts. The results indicate that existing long context LLMs still require significant advancements to effectively process 100K+ context. We further present three intriguing analyses regarding the behavior of LLMs processing long context.


Soulstyler: Using Large Language Model to Guide Image Style Transfer for Target Object

arXiv.org Artificial Intelligence

Image style transfer occupies an important place in both computer graphics and computer vision. However, most current methods require reference to stylized images and cannot individually stylize specific objects. To overcome this limitation, we propose the "Soulstyler" framework, which allows users to guide the stylization of specific objects in an image through simple textual descriptions. We introduce a large language model to parse the text and identify stylization goals and specific styles. Combined with a CLIP-based semantic visual embedding encoder, the model understands and matches text and image content. We also introduce a novel localized text-image block matching loss that ensures that style transfer is performed only on specified target objects, while non-target regions remain in their original style. Experimental results demonstrate that our model is able to accurately perform style transfer on target objects according to textual descriptions without affecting the style of background regions. Our code will be available at https://github.com/yisuanwang/Soulstyler.


Asca: less audio data is more insightful

arXiv.org Artificial Intelligence

Audio recognition in specialized areas such as birdsong and submarine acoustics faces challenges in large-scale pre-training due to the limitations in available samples imposed by sampling environments and specificity requirements. While the Transformer model excels in audio recognition, its dependence on vast amounts of data becomes restrictive in resource-limited settings. Addressing this, we introduce the Audio Spectrogram Convolution Attention (ASCA) based on CoAtNet, integrating a Transformer-convolution hybrid architecture, novel network design, and attention techniques, further augmented with data enhancement and regularization strategies. On the BirdCLEF2023 and AudioSet(Balanced), ASCA achieved accuracies of 81.2% and 35.1%, respectively, significantly outperforming competing methods. The unique structure of our model enriches output, enabling generalization across various audio detection tasks. Our code can be found at https://github.com/LeeCiang/ASCA.


IncreLoRA: Incremental Parameter Allocation Method for Parameter-Efficient Fine-tuning

arXiv.org Artificial Intelligence

With the increasing size of pre-trained language models (PLMs), fine-tuning all the parameters in the model is not efficient, especially when there are a large number of downstream tasks, which incur significant training and storage costs. Many parameter-efficient fine-tuning (PEFT) approaches have been proposed, among which, Low-Rank Adaptation (LoRA) is a representative approach that injects trainable rank decomposition matrices into every target module. Yet LoRA ignores the importance of parameters in different modules. To address this problem, many works have been proposed to prune the parameters of LoRA. However, under limited training conditions, the upper bound of the rank of the pruned parameter matrix is still affected by the preset values. We, therefore, propose IncreLoRA, an incremental parameter allocation method that adaptively adds trainable parameters during training based on the importance scores of each module. This approach is different from the pruning method as it is not limited by the initial number of training parameters, and each parameter matrix has a higher rank upper bound for the same training overhead. We conduct extensive experiments on GLUE to demonstrate the effectiveness of IncreLoRA. The results show that our method owns higher parameter efficiency, especially when under the low-resource settings where our method significantly outperforms the baselines. Our code is publicly available.


Data-driven multinomial random forest

arXiv.org Artificial Intelligence

In this article, we strengthen the proof methods of some previously weakly consistent variants of random forests into strongly consistent proof methods, and improve the data utilization of these variants, in order to obtain better theoretical properties and experimental performance. In addition, based on the multinomial random forest (MRF) and Bernoulli random forest (BRF), we propose a data-driven multinomial random forest (DMRF) algorithm, which has lower complexity than MRF and higher complexity than BRF while satisfying strong consistency. It has better performance in classification and regression problems than previous RF variants that only satisfy weak consistency, and in most cases even surpasses standard random forest. To the best of our knowledge, DMRF is currently the most excellent strongly consistent RF variant with low algorithm complexity.