Chen, Huiqiang
Safe and Reliable Diffusion Models via Subspace Projection
Chen, Huiqiang, Zhu, Tianqing, Wang, Linlin, Yu, Xin, Gao, Longxiang, Zhou, Wanlei
Large-scale text-to-image (T2I) diffusion models have revolutionized image generation, enabling the synthesis of highly detailed visuals from textual descriptions. However, these models may inadvertently generate inappropriate content, such as copyrighted works or offensive images. While existing methods attempt to eliminate specific unwanted concepts, they often fail to ensure complete removal, allowing the concept to reappear in subtle forms. For instance, a model may successfully avoid generating images in Van Gogh's style when explicitly prompted with 'Van Gogh', yet still reproduce his signature artwork when given the prompt 'Starry Night'. In this paper, we propose SAFER, a novel and efficient approach for thoroughly removing target concepts from diffusion models. At a high level, SAFER is inspired by the observed low-dimensional structure of the text embedding space. The method first identifies a concept-specific subspace $S_c$ associated with the target concept c. It then projects the prompt embeddings onto the complementary subspace of $S_c$, effectively erasing the concept from the generated images. Since concepts can be abstract and difficult to fully capture using natural language alone, we employ textual inversion to learn an optimized embedding of the target concept from a reference image. This enables more precise subspace estimation and enhances removal performance. Furthermore, we introduce a subspace expansion strategy to ensure comprehensive and robust concept erasure. Extensive experiments demonstrate that SAFER consistently and effectively erases unwanted concepts from diffusion models while preserving generation quality.
AFed: Algorithmic Fair Federated Learning
Chen, Huiqiang, Zhu, Tianqing, Zhou, Wanlei, Zhao, Wei
Federated Learning (FL) has gained significant attention as it facilitates collaborative machine learning among multiple clients without centralizing their data on a server. FL ensures the privacy of participating clients by locally storing their data, which creates new challenges in fairness. Traditional debiasing methods assume centralized access to sensitive information, rendering them impractical for the FL setting. Additionally, FL is more susceptible to fairness issues than centralized machine learning due to the diverse client data sources that may be associated with group information. Therefore, training a fair model in FL without access to client local data is important and challenging. This paper presents AFed, a straightforward yet effective framework for promoting group fairness in FL. The core idea is to circumvent restricted data access by learning the global data distribution. This paper proposes two approaches: AFed-G, which uses a conditional generator trained on the server side, and AFed-GAN, which improves upon AFed-G by training a conditional GAN on the client side. We augment the client data with the generated samples to help remove bias. Our theoretical analysis justifies the proposed methods, and empirical results on multiple real-world datasets demonstrate a substantial improvement in AFed over several baselines.
Machine Unlearning via Null Space Calibration
Chen, Huiqiang, Zhu, Tianqing, Yu, Xin, Zhou, Wanlei
Machine unlearning aims to enable models to forget specific data instances when receiving deletion requests. Current research centres on efficient unlearning to erase the influence of data from the model and neglects the subsequent impacts on the remaining data. Consequently, existing unlearning algorithms degrade the model's performance after unlearning, known as \textit{over-unlearning}. This paper addresses this critical yet under-explored issue by introducing machine \underline{U}nlearning via \underline{N}ull \underline{S}pace \underline{C}alibration (UNSC), which can accurately unlearn target samples without over-unlearning. On the contrary, by calibrating the decision space during unlearning, UNSC can significantly improve the model's performance on the remaining samples. In particular, our approach hinges on confining the unlearning process to a specified null space tailored to the remaining samples, which is augmented by strategically pseudo-labeling the unlearning samples. Comparative analyses against several established baselines affirm the superiority of our approach. Code is released at this \href{https://github.com/HQC-ML/Machine-Unlearning-via-Null-Space-Calibration}{URL}.
Divide and Ensemble: Progressively Learning for the Unknown
Zhang, Hu, Shen, Xin, Du, Heming, Chen, Huiqiang, Liu, Chen, Sheng, Hongwei, Xu, Qingzheng, Khan, MD Wahiduzzaman, Yu, Qingtao, Zhu, Tianqing, Chapman, Scott, Huang, Zi, Yu, Xin
In the wheat nutrient deficiencies classification challenge, we present the DividE and EnseMble (DEEM) method for progressive test data predictions. We find that (1) test images are provided in the challenge; (2) samples are equipped with their collection dates; (3) the samples of different dates show notable discrepancies. Based on the findings, we partition the dataset into discrete groups by the dates and train models on each divided group. We then adopt the pseudo-labeling approach to label the test data and incorporate those with high confidence into the training set. In pseudo-labeling, we leverage models ensemble with different architectures to enhance the reliability of predictions. The pseudo-labeling and ensembled model training are iteratively conducted until all test samples are labeled. Finally, the separated models for each group are unified to obtain the model for the whole dataset. Our method achieves an average of 93.6\% Top-1 test accuracy~(94.0\% on WW2020 and 93.2\% on WR2021) and wins the 1$st$ place in the Deep Nutrient Deficiency Challenge~\footnote{https://cvppa2023.github.io/challenges/}.
Privacy and Fairness in Federated Learning: on the Perspective of Trade-off
Chen, Huiqiang, Zhu, Tianqing, Zhang, Tao, Zhou, Wanlei, Yu, Philip S.
Federated learning (FL) has been a hot topic in recent years. Ever since it was introduced, researchers have endeavored to devise FL systems that protect privacy or ensure fair results, with most research focusing on one or the other. As two crucial ethical notions, the interactions between privacy and fairness are comparatively less studied. However, since privacy and fairness compete, considering each in isolation will inevitably come at the cost of the other. To provide a broad view of these two critical topics, we presented a detailed literature review of privacy and fairness issues, highlighting unique challenges posed by FL and solutions in federated settings. We further systematically surveyed different interactions between privacy and fairness, trying to reveal how privacy and fairness could affect each other and point out new research directions in fair and private FL.