Collaborating Authors

Chen, Huajun

Knowledge Graph Reasoning with Logics and Embeddings: Survey and Perspective Artificial Intelligence

Knowledge graph (KG) reasoning is becoming increasingly popular in both academia and industry. Conventional KG reasoning based on symbolic logic is deterministic, with reasoning results being explainable, while modern embedding-based reasoning can deal with uncertainty and predict plausible knowledge, often with high efficiency via vector computation. A promising direction is to integrate both logic-based and embedding-based methods, with the vision to have advantages of both. It has attracted wide research attention with more and more works published in recent years. In this paper, we comprehensively survey these works, focusing on how logics and embeddings are integrated. We first briefly introduce preliminaries, then systematically categorize and discuss works of logic and embedding-aware KG reasoning from different perspectives, and finally conclude and discuss the challenges and further directions.

Prompt-Guided Injection of Conformation to Pre-trained Protein Model Artificial Intelligence

Pre-trained protein models (PTPMs) represent a protein with one fixed embedding and thus are not capable for diverse tasks. For example, protein structures can shift, namely protein folding, between several conformations in various biological processes. To enable PTPMs to produce task-aware representations, we propose to learn interpretable, pluggable and extensible protein prompts as a way of injecting task-related knowledge into PTPMs. In this regard, prior PTPM optimization with the masked language modeling task can be interpreted as learning a sequence prompt (Seq prompt) that enables PTPMs to capture the sequential dependency between amino acids. To incorporate conformational knowledge to PTPMs, we propose an interaction-conformation prompt (IC prompt) that is learned through back-propagation with the protein-protein interaction task. As an instantiation, we present a conformation-aware pre-trained protein model that learns both sequence and interaction-conformation prompts in a multi-task setting. We conduct comprehensive experiments on nine protein datasets. Results confirm our expectation that using the sequence prompt does not hurt PTPMs' performance on sequence-related tasks while incorporating the interaction-conformation prompt significantly improves PTPMs' performance on tasks where conformational knowledge counts. We also show the learned prompts can be combined and extended to deal with new complex tasks.

Reasoning Through Memorization: Nearest Neighbor Knowledge Graph Embeddings Artificial Intelligence

Previous knowledge graph embedding approaches usually map entities to representations and utilize score functions to predict the target entities, yet they struggle to reason rare or emerging unseen entities. In this paper, we propose kNN-KGE, a new knowledge graph embedding approach, by linearly interpolating its entity distribution with k-nearest neighbors. We compute the nearest neighbors based on the distance in the entity embedding space from the knowledge store. Our approach can allow rare or emerging entities to be memorized explicitly rather than implicitly in model parameters. Experimental results demonstrate that our approach can improve inductive and transductive link prediction results and yield better performance for low-resource settings with only a few triples, which might be easier to reason via explicit memory.

Low-resource Learning with Knowledge Graphs: A Comprehensive Survey Artificial Intelligence

Machine learning methods especially deep neural networks have achieved great success but many of them often rely on a number of labeled samples for training. In real-world applications, we often need to address sample shortage due to e.g., dynamic contexts with emerging prediction targets and costly sample annotation. Therefore, low-resource learning, which aims to learn robust prediction models with no enough resources (especially training samples), is now being widely investigated. Among all the low-resource learning studies, many prefer to utilize some auxiliary information in the form of Knowledge Graph (KG), which is becoming more and more popular for knowledge representation, to reduce the reliance on labeled samples. In this survey, we very comprehensively reviewed over $90$ papers about KG-aware research for two major low-resource learning settings -- zero-shot learning (ZSL) where new classes for prediction have never appeared in training, and few-shot learning (FSL) where new classes for prediction have only a small number of labeled samples that are available. We first introduced the KGs used in ZSL and FSL studies as well as the existing and potential KG construction solutions, and then systematically categorized and summarized KG-aware ZSL and FSL methods, dividing them into different paradigms such as the mapping-based, the data augmentation, the propagation-based and the optimization-based. We next presented different applications, including not only KG augmented tasks in Computer Vision and Natural Language Processing (e.g., image classification, text classification and knowledge extraction), but also tasks for KG curation (e.g., inductive KG completion), and some typical evaluation resources for each task. We eventually discussed some challenges and future directions on aspects such as new learning and reasoning paradigms, and the construction of high quality KGs.

Knowledge Graph Embedding in E-commerce Applications: Attentive Reasoning, Explanations, and Transferable Rules Artificial Intelligence

Knowledge Graphs (KGs), representing facts as triples, have been widely adopted in many applications. Reasoning tasks such as link prediction and rule induction are important for the development of KGs. Knowledge Graph Embeddings (KGEs) embedding entities and relations of a KG into continuous vector spaces, have been proposed for these reasoning tasks and proven to be efficient and robust. But the plausibility and feasibility of applying and deploying KGEs in real-work applications has not been well-explored. In this paper, we discuss and report our experiences of deploying KGEs in a real domain application: e-commerce. We first identity three important desiderata for e-commerce KG systems: 1) attentive reasoning, reasoning over a few target relations of more concerns instead of all; 2) explanation, providing explanations for a prediction to help both users and business operators understand why the prediction is made; 3) transferable rules, generating reusable rules to accelerate the deployment of a KG to new systems. While non existing KGE could meet all these desiderata, we propose a novel one, an explainable knowledge graph attention network that make prediction through modeling correlations between triples rather than purely relying on its head entity, relation and tail entity embeddings. It could automatically selects attentive triples for prediction and records the contribution of them at the same time, from which explanations could be easily provided and transferable rules could be efficiently produced. We empirically show that our method is capable of meeting all three desiderata in our e-commerce application and outperform typical baselines on datasets from real domain applications.

Improving Knowledge Graph Representation Learning by Structure Contextual Pre-training Artificial Intelligence

Representation learning models for Knowledge Graphs (KG) have proven to be effective in encoding structural information and performing reasoning over KGs. In this paper, we propose a novel pre-training-then-fine-tuning framework for knowledge graph representation learning, in which a KG model is firstly pre-trained with triple classification task, followed by discriminative fine-tuning on specific downstream tasks such as entity type prediction and entity alignment. Drawing on the general ideas of learning deep contextualized word representations in typical pre-trained language models, we propose SCoP to learn pre-trained KG representations with structural and contextual triples of the target triple encoded. Experimental results demonstrate that fine-tuning SCoP not only outperforms results of baselines on a portfolio of downstream tasks but also avoids tedious task-specific model design and parameter training.

LOGEN: Few-shot Logical Knowledge-Conditioned Text Generation with Self-training Artificial Intelligence

Natural language generation from structured data mainly focuses on surface-level descriptions, suffering from uncontrollable content selection and low fidelity. Previous works leverage logical forms to facilitate logical knowledge-conditioned text generation. Though achieving remarkable progress, they are data-hungry, which makes the adoption for real-world applications challenging with limited data. To this end, this paper proposes a unified framework for logical knowledge-conditioned text generation in the few-shot setting. With only a few seeds logical forms (e.g., 20/100 shot), our approach leverages self-training and samples pseudo logical forms based on content and structure consistency. Experimental results demonstrate that our approach can obtain better few-shot performance than baselines.

Molecular Contrastive Learning with Chemical Element Knowledge Graph Artificial Intelligence

Molecular representation learning contributes to multiple downstream tasks such as molecular property prediction and drug design. To properly represent molecules, graph contrastive learning is a promising paradigm as it utilizes self-supervision signals and has no requirements for human annotations. However, prior works fail to incorporate fundamental domain knowledge into graph semantics and thus ignore the correlations between atoms that have common attributes but are not directly connected by bonds. To address these issues, we construct a Chemical Element Knowledge Graph (KG) to summarize microscopic associations between elements and propose a novel Knowledge-enhanced Contrastive Learning (KCL) framework for molecular representation learning. KCL framework consists of three modules. The first module, knowledge-guided graph augmentation, augments the original molecular graph based on the Chemical Element KG. The second module, knowledge-aware graph representation, extracts molecular representations with a common graph encoder for the original molecular graph and a Knowledge-aware Message Passing Neural Network (KMPNN) to encode complex information in the augmented molecular graph. The final module is a contrastive objective, where we maximize agreement between these two views of molecular graphs. Extensive experiments demonstrated that KCL obtained superior performances against state-of-the-art baselines on eight molecular datasets. Visualization experiments properly interpret what KCL has learned from atoms and attributes in the augmented molecular graphs. Our codes and data are available in supplementary materials.

Standing on the Shoulders of Predecessors: Meta-Knowledge Transfer for Knowledge Graphs Artificial Intelligence

Knowledge graphs (KGs) have become widespread, and various knowledge graphs are constructed incessantly to support many in-KG and out-of-KG applications. During the construction of KGs, although new KGs may contain new entities with respect to constructed KGs, some entity-independent knowledge can be transferred from constructed KGs to new KGs. We call such knowledge meta-knowledge, and refer to the problem of transferring meta-knowledge from constructed (source) KGs to new (target) KGs to improve the performance of tasks on target KGs as meta-knowledge transfer for knowledge graphs. However, there is no available general framework that can tackle meta-knowledge transfer for both in-KG and out-of-KG tasks uniformly. Therefore, in this paper, we propose a framework, MorsE, which means conducting Meta-Learning for Meta-Knowledge Transfer via Knowledge Graph Embedding. MorsE represents the meta-knowledge via Knowledge Graph Embedding and learns the meta-knowledge by Meta-Learning. Specifically, MorsE uses an entity initializer and a Graph Neural Network (GNN) modulator to entity-independently obtain entity embeddings given a KG and is trained following the meta-learning setting to gain the ability of effectively obtaining embeddings. Experimental results on meta-knowledge transfer for both in-KG and out-of-KG tasks show that MorsE is able to learn and transfer meta-knowledge between KGs effectively, and outperforms existing state-of-the-art models.

Principled Representation Learning for Entity Alignment Artificial Intelligence

Embedding-based entity alignment (EEA) has recently received great attention. Despite significant performance improvement, few efforts have been paid to facilitate understanding of EEA methods. Most existing studies rest on the assumption that a small number of pre-aligned entities can serve as anchors connecting the embedding spaces of two KGs. Nevertheless, no one investigates the rationality of such an assumption. To fill the research gap, we define a typical paradigm abstracted from existing EEA methods and analyze how the embedding discrepancy between two potentially aligned entities is implicitly bounded by a predefined margin in the scoring function. Further, we find that such a bound cannot guarantee to be tight enough for alignment learning. We mitigate this problem by proposing a new approach, named NeoEA, to explicitly learn KG-invariant and principled entity embeddings. In this sense, an EEA model not only pursues the closeness of aligned entities based on geometric distance, but also aligns the neural ontologies of two KGs by eliminating the discrepancy in embedding distribution and underlying ontology knowledge. Our experiments demonstrate consistent and significant improvement in performance against the best-performing EEA methods.