Chen, Chun
Towards Label-Only Membership Inference Attack against Pre-trained Large Language Models
He, Yu, Li, Boheng, Liu, Liu, Ba, Zhongjie, Dong, Wei, Li, Yiming, Qin, Zhan, Ren, Kui, Chen, Chun
Membership Inference Attacks (MIAs) aim to predict whether a data sample belongs to the model's training set or not. Although prior research has extensively explored MIAs in Large Language Models (LLMs), they typically require accessing to complete output logits (\ie, \textit{logits-based attacks}), which are usually not available in practice. In this paper, we study the vulnerability of pre-trained LLMs to MIAs in the \textit{label-only setting}, where the adversary can only access generated tokens (text). We first reveal that existing label-only MIAs have minor effects in attacking pre-trained LLMs, although they are highly effective in inferring fine-tuning datasets used for personalized LLMs. We find that their failure stems from two main reasons, including better generalization and overly coarse perturbation. Specifically, due to the extensive pre-training corpora and exposing each sample only a few times, LLMs exhibit minimal robustness differences between members and non-members. This makes token-level perturbations too coarse to capture such differences. To alleviate these problems, we propose \textbf{PETAL}: a label-only membership inference attack based on \textbf{PE}r-\textbf{T}oken sem\textbf{A}ntic simi\textbf{L}arity. Specifically, PETAL leverages token-level semantic similarity to approximate output probabilities and subsequently calculate the perplexity. It finally exposes membership based on the common assumption that members are `better' memorized and have smaller perplexity. We conduct extensive experiments on the WikiMIA benchmark and the more challenging MIMIR benchmark. Empirically, our PETAL performs better than the extensions of existing label-only attacks against personalized LLMs and even on par with other advanced logit-based attacks across all metrics on five prevalent open-source LLMs.
Uncertainty-Aware Graph Structure Learning
Han, Shen, Zhou, Zhiyao, Chen, Jiawei, Hao, Zhezheng, Zhou, Sheng, Wang, Gang, Feng, Yan, Chen, Chun, Wang, Can
Graph Neural Networks (GNNs) have become a prominent approach for learning from graph-structured data. However, their effectiveness can be significantly compromised when the graph structure is suboptimal. To address this issue, Graph Structure Learning (GSL) has emerged as a promising technique that refines node connections adaptively. Nevertheless, we identify two key limitations in existing GSL methods: 1) Most methods primarily focus on node similarity to construct relationships, while overlooking the quality of node information. Blindly connecting low-quality nodes and aggregating their ambiguous information can degrade the performance of other nodes. 2) The constructed graph structures are often constrained to be symmetric, which may limit the model's flexibility and effectiveness. To overcome these limitations, we propose an Uncertainty-aware Graph Structure Learning (UnGSL) strategy. UnGSL estimates the uncertainty of node information and utilizes it to adjust the strength of directional connections, where the influence of nodes with high uncertainty is adaptively reduced.Importantly, UnGSL serves as a plug-in module that can be seamlessly integrated into existing GSL methods with minimal additional computational cost. In our experiments, we implement UnGSL into six representative GSL methods, demonstrating consistent performance improvements. The code is available at https://github.com/UnHans/UnGSL.
Membership Inference Attacks Against Vision-Language Models
Hu, Yuke, Li, Zheng, Liu, Zhihao, Zhang, Yang, Qin, Zhan, Ren, Kui, Chen, Chun
Vision-Language Models (VLMs), built on pre-trained vision encoders and large language models (LLMs), have shown exceptional multi-modal understanding and dialog capabilities, positioning them as catalysts for the next technological revolution. However, while most VLM research focuses on enhancing multi-modal interaction, the risks of data misuse and leakage have been largely unexplored. This prompts the need for a comprehensive investigation of such risks in VLMs. In this paper, we conduct the first analysis of misuse and leakage detection in VLMs through the lens of membership inference attack (MIA). In specific, we focus on the instruction tuning data of VLMs, which is more likely to contain sensitive or unauthorized information. To address the limitation of existing MIA methods, we introduce a novel approach that infers membership based on a set of samples and their sensitivity to temperature, a unique parameter in VLMs. Based on this, we propose four membership inference methods, each tailored to different levels of background knowledge, ultimately arriving at the most challenging scenario. Our comprehensive evaluations show that these methods can accurately determine membership status, e.g., achieving an AUC greater than 0.8 targeting a small set consisting of only 5 samples on LLaVA.
Mitigating Privacy Risks in LLM Embeddings from Embedding Inversion
Liu, Tiantian, Yao, Hongwei, Wu, Tong, Qin, Zhan, Lin, Feng, Ren, Kui, Chen, Chun
Embeddings have become a cornerstone in the functionality of large language models (LLMs) due to their ability to transform text data into rich, dense numerical representations that capture semantic and syntactic properties. These embedding vector databases serve as the long-term memory of LLMs, enabling efficient handling of a wide range of natural language processing tasks. However, the surge in popularity of embedding vector databases in LLMs has been accompanied by significant concerns about privacy leakage. Embedding vector databases are particularly vulnerable to embedding inversion attacks, where adversaries can exploit the embeddings to reverse-engineer and extract sensitive information from the original text data. Existing defense mechanisms have shown limitations, often struggling to balance security with the performance of downstream tasks. To address these challenges, we introduce Eguard, a novel defense mechanism designed to mitigate embedding inversion attacks. Eguard employs a transformer-based projection network and text mutual information optimization to safeguard embeddings while preserving the utility of LLMs. Our approach significantly reduces privacy risks, protecting over 95% of tokens from inversion while maintaining high performance across downstream tasks consistent with original embeddings.
PSL: Rethinking and Improving Softmax Loss from Pairwise Perspective for Recommendation
Yang, Weiqin, Chen, Jiawei, Xin, Xin, Zhou, Sheng, Hu, Binbin, Feng, Yan, Chen, Chun, Wang, Can
Softmax Loss (SL) is widely applied in recommender systems (RS) and has demonstrated effectiveness. This work analyzes SL from a pairwise perspective, revealing two significant limitations: 1) the relationship between SL and conventional ranking metrics like DCG is not sufficiently tight; 2) SL is highly sensitive to false negative instances. Our analysis indicates that these limitations are primarily due to the use of the exponential function. To address these issues, this work extends SL to a new family of loss functions, termed Pairwise Softmax Loss (PSL), which replaces the exponential function in SL with other appropriate activation functions. While the revision is minimal, we highlight three merits of PSL: 1) it serves as a tighter surrogate for DCG with suitable activation functions; 2) it better balances data contributions; and 3) it acts as a specific BPR loss enhanced by Distributionally Robust Optimization (DRO).
Conditional Image Synthesis with Diffusion Models: A Survey
Zhan, Zheyuan, Chen, Defang, Mei, Jian-Ping, Zhao, Zhenghe, Chen, Jiawei, Chen, Chun, Lyu, Siwei, Wang, Can
Conditional image synthesis based on user-specified requirements is a key component in creating complex visual content. In recent years, diffusion-based generative modeling has become a highly effective way for conditional image synthesis, leading to exponential growth in the literature. However, the complexity of diffusion-based modeling, the wide range of image synthesis tasks, and the diversity of conditioning mechanisms present significant challenges for researchers to keep up with rapid developments and understand the core concepts on this topic. In this survey, we categorize existing works based on how conditions are integrated into the two fundamental components of diffusion-based modeling, i.e., the denoising network and the sampling process. We specifically highlight the underlying principles, advantages, and potential challenges of various conditioning approaches in the training, re-purposing, and specialization stages to construct a desired denoising network. We also summarize six mainstream conditioning mechanisms in the essential sampling process. All discussions are centered around popular applications. Finally, we pinpoint some critical yet still open problems to be solved in the future and suggest some possible solutions. Our reviewed works are itemized at https://github.com/zju-pi/Awesome-Conditional-Diffusion-Models.
Towards Dynamic Graph Neural Networks with Provably High-Order Expressive Power
Wang, Zhe, Zhao, Tianjian, Zhang, Zhen, Chen, Jiawei, Zhou, Sheng, Feng, Yan, Chen, Chun, Wang, Can
Dynamic Graph Neural Networks (DyGNNs) have garnered increasing research attention for learning representations on evolving graphs. Despite their effectiveness, the limited expressive power of existing DyGNNs hinders them from capturing important evolving patterns of dynamic graphs. Although some works attempt to enhance expressive capability with heuristic features, there remains a lack of DyGNN frameworks with provable and quantifiable high-order expressive power. To address this research gap, we firstly propose the k-dimensional Dynamic WL tests (k-DWL) as the referencing algorithms to quantify the expressive power of DyGNNs. We demonstrate that the expressive power of existing DyGNNs is upper bounded by the 1-DWL test. To enhance the expressive power, we propose Dynamic Graph Neural Network with High-order expressive power (HopeDGN), which updates the representation of central node pair by aggregating the interaction history with neighboring node pairs. Our theoretical results demonstrate that HopeDGN can achieve expressive power equivalent to the 2-DWL test. We then present a Transformer-based implementation for the local variant of HopeDGN. Experimental results show that HopeDGN achieved performance improvements of up to 3.12%, demonstrating the effectiveness of HopeDGN.
Motif-driven Subgraph Structure Learning for Graph Classification
Zhou, Zhiyao, Zhou, Sheng, Mao, Bochao, Chen, Jiawei, Sun, Qingyun, Feng, Yan, Chen, Chun, Wang, Can
To mitigate the suboptimal nature of graph structure, Graph Structure Learning (GSL) has emerged as a promising approach to improve graph structure and boost performance in downstream tasks. Despite the proposal of numerous GSL methods, the progresses in this field mostly concentrated on node-level tasks, while graph-level tasks (e.g., graph classification) remain largely unexplored. Notably, applying node-level GSL to graph classification is non-trivial due to the lack of find-grained guidance for intricate structure learning. Inspired by the vital role of subgraph in graph classification, in this paper we explore the potential of subgraph structure learning for graph classification by tackling the challenges of key subgraph selection and structure optimization. We propose a novel Motif-driven Subgraph Structure Learning method for Graph Classification (MOSGSL). Specifically, MOSGSL incorporates a subgraph structure learning module which can adaptively select important subgraphs. A motif-driven structure guidance module is further introduced to capture key subgraph-level structural patterns (motifs) and facilitate personalized structure learning. Extensive experiments demonstrate a significant and consistent improvement over baselines, as well as its flexibility and generalizability for various backbones and learning procedures.
How Do Recommendation Models Amplify Popularity Bias? An Analysis from the Spectral Perspective
Lin, Siyi, Gao, Chongming, Chen, Jiawei, Zhou, Sheng, Hu, Binbin, Feng, Yan, Chen, Chun, Wang, Can
Recommendation Systems (RS) are often plagued by popularity bias. When training a recommendation model on a typically long-tailed dataset, the model tends to not only inherit this bias but often exacerbate it, resulting in over-representation of popular items in the recommendation lists. This study conducts comprehensive empirical and theoretical analyses to expose the root causes of this phenomenon, yielding two core insights: 1) Item popularity is memorized in the principal spectrum of the score matrix predicted by the recommendation model; 2) The dimension collapse phenomenon amplifies the relative prominence of the principal spectrum, thereby intensifying the popularity bias. Building on these insights, we propose a novel debiasing strategy that leverages a spectral norm regularizer to penalize the magnitude of the principal singular value. We have developed an efficient algorithm to expedite the calculation of the spectral norm by exploiting the spectral property of the score matrix. Extensive experiments across seven real-world datasets and three testing paradigms have been conducted to validate the superiority of the proposed method.
Knowledge Translation: A New Pathway for Model Compression
Sun, Wujie, Chen, Defang, Chen, Jiawei, Feng, Yan, Chen, Chun, Wang, Can
Deep learning has witnessed significant advancements in recent years at the cost of increasing training, inference, and model storage overhead. While existing model compression methods strive to reduce the number of model parameters while maintaining high accuracy, they inevitably necessitate the re-training of the compressed model or impose architectural constraints. To overcome these limitations, this paper presents a novel framework, termed \textbf{K}nowledge \textbf{T}ranslation (KT), wherein a ``translation'' model is trained to receive the parameters of a larger model and generate compressed parameters. The concept of KT draws inspiration from language translation, which effectively employs neural networks to convert different languages, maintaining identical meaning. Accordingly, we explore the potential of neural networks to convert models of disparate sizes, while preserving their functionality. We propose a comprehensive framework for KT, introduce data augmentation strategies to enhance model performance despite restricted training data, and successfully demonstrate the feasibility of KT on the MNIST dataset. Code is available at \url{https://github.com/zju-SWJ/KT}.