Chen, Chaochao
Reproducibility Companion Paper: Making Users Indistinguishable: Attribute-wise Unlearning in Recommender Systems
Li, Yuyuan, Fang, Junjie, Chen, Chaochao, Zheng, Xiaolin, Zhang, Yizhao, Han, Zhongxuan
In this paper, we reproduce the experimental results presented in our previous work titled "Making Users Indistinguishable: Attribute-wise Unlearning in Recommender Systems," which was published in the proceedings of the 31st ACM International Conference on Multimedia. This paper aims to validate the effectiveness of our proposed method and help others reproduce our experimental results. We provide detailed descriptions of our preprocessed datasets, source code structure, configuration file settings, experimental environment, and reproduced experimental results.
LoGoFair: Post-Processing for Local and Global Fairness in Federated Learning
Zhang, Li, Chen, Chaochao, Han, Zhongxuan, Zhong, Qiyong, Zheng, Xiaolin
Federated learning (FL) has garnered considerable interest for its capability to learn from decentralized data sources. Given the increasing application of FL in decision-making scenarios, addressing fairness issues across different sensitive groups (e.g., female, male) in FL is crucial. Current research often focuses on facilitating fairness at each client's data (local fairness) or within the entire dataset across all clients (global fairness). However, existing approaches that focus exclusively on either local or global fairness fail to address two key challenges: (\textbf{CH1}) Under statistical heterogeneity, global fairness does not imply local fairness, and vice versa. (\textbf{CH2}) Achieving fairness under model-agnostic setting. To tackle the aforementioned challenges, this paper proposes a novel post-processing framework for achieving both Local and Global Fairness in the FL context, namely LoGoFair. To address CH1, LoGoFair endeavors to seek the Bayes optimal classifier under local and global fairness constraints, which strikes the optimal accuracy-fairness balance in the probabilistic sense. To address CH2, LoGoFair employs a model-agnostic federated post-processing procedure that enables clients to collaboratively optimize global fairness while ensuring local fairness, thereby achieving the optimal fair classifier within FL. Experimental results on three real-world datasets further illustrate the effectiveness of the proposed LoGoFair framework.
A Survey on Recommendation Unlearning: Fundamentals, Taxonomy, Evaluation, and Open Questions
Li, Yuyuan, Feng, Xiaohua, Chen, Chaochao, Yang, Qiang
Recommender systems have become increasingly influential in shaping user behavior and decision-making, highlighting their growing impact in various domains. Meanwhile, the widespread adoption of machine learning models in recommender systems has raised significant concerns regarding user privacy and security. As compliance with privacy regulations becomes more critical, there is a pressing need to address the issue of recommendation unlearning, i.e., eliminating the memory of specific training data from the learned recommendation models. Despite its importance, traditional machine unlearning methods are ill-suited for recommendation unlearning due to the unique challenges posed by collaborative interactions and model parameters. This survey offers a comprehensive review of the latest advancements in recommendation unlearning, exploring the design principles, challenges, and methodologies associated with this emerging field. We provide a unified taxonomy that categorizes different recommendation unlearning approaches, followed by a summary of widely used benchmarks and metrics for evaluation. By reviewing the current state of research, this survey aims to guide the development of more efficient, scalable, and robust recommendation unlearning techniques. Furthermore, we identify open research questions in this field, which could pave the way for future innovations not only in recommendation unlearning but also in a broader range of unlearning tasks across different machine learning applications.
WassFFed: Wasserstein Fair Federated Learning
Han, Zhongxuan, Zhang, Li, Chen, Chaochao, Zheng, Xiaolin, Zheng, Fei, Li, Yuyuan, Yin, Jianwei
Federated Learning (FL) employs a training approach to address scenarios where users' data cannot be shared across clients. Achieving fairness in FL is imperative since training data in FL is inherently geographically distributed among diverse user groups. Existing research on fairness predominantly assumes access to the entire training data, making direct transfer to FL challenging. However, the limited existing research on fairness in FL does not effectively address two key challenges, i.e., (CH1) Current methods fail to deal with the inconsistency between fair optimization results obtained with surrogate functions and fair classification results. (CH2) Directly aggregating local fair models does not always yield a globally fair model due to non Identical and Independent data Distributions (non-IID) among clients. To address these challenges, we propose a Wasserstein Fair Federated Learning framework, namely WassFFed. To tackle CH1, we ensure that the outputs of local models, rather than the loss calculated with surrogate functions or classification results with a threshold, remain independent of various user groups. To resolve CH2, we employ a Wasserstein barycenter calculation of all local models' outputs for each user group, bringing local model outputs closer to the global output distribution to ensure consistency between the global model and local models. We conduct extensive experiments on three real-world datasets, demonstrating that WassFFed outperforms existing approaches in striking a balance between accuracy and fairness.
Federated Graph Learning for Cross-Domain Recommendation
Yang, Ziqi, Peng, Zhaopeng, Wang, Zihui, Qi, Jianzhong, Chen, Chaochao, Pan, Weike, Wen, Chenglu, Wang, Cheng, Fan, Xiaoliang
Cross-domain recommendation (CDR) offers a promising solution to the data sparsity problem by enabling knowledge transfer across source and target domains. However, many recent CDR models overlook crucial issues such as privacy as well as the risk of negative transfer (which negatively impact model performance), especially in multi-domain settings. To address these challenges, we propose FedGCDR, a novel federated graph learning framework that securely and effectively leverages positive knowledge from multiple source domains. First, we design a positive knowledge transfer module that ensures privacy during inter-domain knowledge transmission. This module employs differential privacy-based knowledge extraction combined with a feature mapping mechanism, transforming source domain embeddings from federated graph attention networks into reliable domain knowledge. Second, we design a knowledge activation module to filter out potential harmful or conflicting knowledge from source domains, addressing the issues of negative transfer. This module enhances target domain training by expanding the graph of the target domain to generate reliable domain attentions and fine-tunes the target model for improved negative knowledge filtering and more accurate predictions. We conduct extensive experiments on 16 popular domains of the Amazon dataset, demonstrating that FedGCDR significantly outperforms state-of-the-art methods.
FOOGD: Federated Collaboration for Both Out-of-distribution Generalization and Detection
Liao, Xinting, Liu, Weiming, Zhou, Pengyang, Yu, Fengyuan, Xu, Jiahe, Wang, Jun, Wang, Wenjie, Chen, Chaochao, Zheng, Xiaolin
Federated learning (FL) is a promising machine learning paradigm that collaborates with client models to capture global knowledge. However, deploying FL models in real-world scenarios remains unreliable due to the coexistence of in-distribution data and unexpected out-of-distribution (OOD) data, such as covariate-shift and semantic-shift data. Current FL researches typically address either covariate-shift data through OOD generalization or semantic-shift data via OOD detection, overlooking the simultaneous occurrence of various OOD shifts. In this work, we propose FOOGD, a method that estimates the probability density of each client and obtains reliable global distribution as guidance for the subsequent FL process. Firstly, SM3D in FOOGD estimates score model for arbitrary distributions without prior constraints, and detects semantic-shift data powerfully. Then SAG in FOOGD provides invariant yet diverse knowledge for both local covariate-shift generalization and client performance generalization. In empirical validations, FOOGD significantly enjoys three main advantages: (1) reliably estimating non-normalized decentralized distributions, (2) detecting semantic shift data via score values, and (3) generalizing to covariate-shift data by regularizing feature extractor. The prejoct is open in https://github.com/XeniaLLL/FOOGD-main.git.
DIIT: A Domain-Invariant Information Transfer Method for Industrial Cross-Domain Recommendation
Huang, Heyuan, Lou, Xingyu, Chen, Chaochao, Cheng, Pengxiang, Xin, Yue, He, Chengwei, Liu, Xiang, Wang, Jun
Cross-Domain Recommendation (CDR) have received widespread attention due to their ability to utilize rich information across domains. However, most existing CDR methods assume an ideal static condition that is not practical in industrial recommendation systems (RS). Therefore, simply applying existing CDR methods in the industrial RS environment may lead to low effectiveness and efficiency. To fill this gap, we propose DIIT, an end-to-end Domain-Invariant Information Transfer method for industrial cross-domain recommendation. Specifically, We first simulate the industrial RS environment that maintains respective models in multiple domains, each of them is trained in the incremental mode. Then, for improving the effectiveness, we design two extractors to fully extract domain-invariant information from the latest source domain models at the domain level and the representation level respectively. Finally, for improving the efficiency, we design a migrator to transfer the extracted information to the latest target domain model, which only need the target domain model for inference. Experiments conducted on one production dataset and two public datasets verify the effectiveness and efficiency of DIIT.
Rethinking the Representation in Federated Unsupervised Learning with Non-IID Data
Liao, Xinting, Liu, Weiming, Chen, Chaochao, Zhou, Pengyang, Yu, Fengyuan, Zhu, Huabin, Yao, Binhui, Wang, Tao, Zheng, Xiaolin, Tan, Yanchao
Federated learning achieves effective performance in modeling decentralized data. In practice, client data are not well-labeled, which makes it potential for federated unsupervised learning (FUSL) with non-IID data. However, the performance of existing FUSL methods suffers from insufficient representations, i.e., (1) representation collapse entanglement among local and global models, and (2) inconsistent representation spaces among local models. The former indicates that representation collapse in local model will subsequently impact the global model and other local models. The latter means that clients model data representation with inconsistent parameters due to the deficiency of supervision signals. In this work, we propose FedU2 which enhances generating uniform and unified representation in FUSL with non-IID data. Specifically, FedU2 consists of flexible uniform regularizer (FUR) and efficient unified aggregator (EUA). FUR in each client avoids representation collapse via dispersing samples uniformly, and EUA in server promotes unified representation by constraining consistent client model updating. To extensively validate the performance of FedU2, we conduct both cross-device and cross-silo evaluation experiments on two benchmark datasets, i.e., CIFAR10 and CIFAR100.
Personalized Behavior-Aware Transformer for Multi-Behavior Sequential Recommendation
Su, Jiajie, Chen, Chaochao, Lin, Zibin, Li, Xi, Liu, Weiming, Zheng, Xiaolin
Sequential Recommendation (SR) captures users' dynamic preferences by modeling how users transit among items. However, SR models that utilize only single type of behavior interaction data encounter performance degradation when the sequences are short. To tackle this problem, we focus on Multi-Behavior Sequential Recommendation (MBSR) in this paper, which aims to leverage time-evolving heterogeneous behavioral dependencies for better exploring users' potential intents on the target behavior. Solving MBSR is challenging. On the one hand, users exhibit diverse multi-behavior patterns due to personal characteristics. On the other hand, there exists comprehensive co-influence between behavior correlations and item collaborations, the intensity of which is deeply affected by temporal factors. To tackle these challenges, we propose a Personalized Behavior-Aware Transformer framework (PBAT) for MBSR problem, which models personalized patterns and multifaceted sequential collaborations in a novel way to boost recommendation performance. First, PBAT develops a personalized behavior pattern generator in the representation layer, which extracts dynamic and discriminative behavior patterns for sequential learning. Second, PBAT reforms the self-attention layer with a behavior-aware collaboration extractor, which introduces a fused behavior-aware attention mechanism for incorporating both behavioral and temporal impacts into collaborative transitions. We conduct experiments on three benchmark datasets and the results demonstrate the effectiveness and interpretability of our framework. Our implementation code is released at https://github.com/TiliaceaeSU/PBAT.
Federated Learning for Short Text Clustering
Hu, Mengling, Chen, Chaochao, Liu, Weiming, Liao, Xinting, Zheng, Xiaolin
Short text clustering has been popularly studied for its significance in mining valuable insights from many short texts. In this paper, we focus on the federated short text clustering (FSTC) problem, i.e., clustering short texts that are distributed in different clients, which is a realistic problem under privacy requirements. Compared with the centralized short text clustering problem that short texts are stored on a central server, the FSTC problem has not been explored yet. To fill this gap, we propose a Federated Robust Short Text Clustering (FSTC) framework. FSTC includes two main modules, i.e., robust short text clustering module and federated cluster center aggregation module. The robust short text clustering module aims to train an effective short text clustering model with local data in each client. We innovatively combine optimal transport to generate pseudo-labels with Gaussian-uniform mixture model to ensure the reliability of the pseudo-supervised data. The federated cluster center aggregation module aims to exchange knowledge across clients without sharing local raw data in an efficient way. The server aggregates the local cluster centers from different clients and then sends the global centers back to all clients in each communication round. Our empirical studies on three short text clustering datasets demonstrate that FSTC significantly outperforms the federated short text clustering baselines.