Goto

Collaborating Authors

 Chaudhuri, Sumanta


Lightweight Embedded FPGA Deployment of Learned Image Compression with Knowledge Distillation and Hybrid Quantization

arXiv.org Artificial Intelligence

Learnable Image Compression (LIC) has shown the potential to outperform standardized video codecs in RD efficiency, prompting the research for hardware-friendly implementations. Most existing LIC hardware implementations prioritize latency to RD-efficiency and through an extensive exploration of the hardware design space. We present a novel design paradigm where the burden of tuning the design for a specific hardware platform is shifted towards model dimensioning and without compromising on RD-efficiency. First, we design a framework for distilling a leaner student LIC model from a reference teacher: by tuning a single model hyperparameters, we can meet the constraints of different hardware platforms without a complex hardware design exploration. Second, we propose a hardware-friendly implementation of the Generalized Divisive Normalization - GDN activation that preserves RD efficiency even post parameter quantization. Third, we design a pipelined FPGA configuration which takes full advantage of available FPGA resources by leveraging parallel processing and optimizing resource allocation. Our experiments with a state of the art LIC model show that we outperform all existing FPGA implementations while performing very close to the original model.


Find the Lady: Permutation and Re-Synchronization of Deep Neural Networks

arXiv.org Artificial Intelligence

Deep neural networks are characterized by multiple symmetrical, equi-loss solutions that are redundant. Thus, the order of neurons in a layer and feature maps can be given arbitrary permutations, without affecting (or minimally affecting) their output. If we shuffle these neurons, or if we apply to them some perturbations (like fine-tuning) can we put them back in the original order i.e. re-synchronize? Is there a possible corruption threat? Answering these questions is important for applications like neural network white-box watermarking for ownership tracking and integrity verification. We advance a method to re-synchronize the order of permuted neurons. Our method is also effective if neurons are further altered by parameter pruning, quantization, and fine-tuning, showing robustness to integrity attacks. Additionally, we provide theoretical and practical evidence for the usual means to corrupt the integrity of the model, resulting in a solution to counter it. We test our approach on popular computer vision datasets and models, and we illustrate the threat and our countermeasure on a popular white-box watermarking method.