Chatzis, Sotirios
Transformers with Stochastic Competition for Tabular Data Modelling
Voskou, Andreas, Christoforou, Charalambos, Chatzis, Sotirios
Despite the prevalence and significance of tabular data across numerous industries and fields, it has been relatively underexplored in the realm of deep learning. Even today, neural networks are often overshadowed by techniques such as gradient boosted decision trees (GBDT). However, recent models are beginning to close this gap, outperforming GBDT in various setups and garnering increased attention in the field. Inspired by this development, we introduce a novel stochastic deep learning model specifically designed for tabular data. The foundation of this model is a Transformer-based architecture, carefully adapted to cater to the unique properties of tabular data through strategic architectural modifications and leveraging two forms of stochastic competition. First, we employ stochastic "Local Winner Takes All" units to promote generalization capacity through stochasticity and sparsity. Second, we introduce a novel embedding layer that selects among alternative linear embedding layers through a mechanism of stochastic competition. The effectiveness of the model is validated on a variety of widely-used, publicly available datasets. We demonstrate that, through the incorporation of these elements, our model yields high performance and marks a significant advancement in the application of deep learning to tabular data.
Continual Deep Learning on the Edge via Stochastic Local Competition among Subnetworks
Christophides, Theodoros, Tolias, Kyriakos, Chatzis, Sotirios
Continual learning on edge devices poses unique challenges due to stringent resource constraints. This paper introduces a novel method that leverages stochastic competition principles to promote sparsity, significantly reducing deep network memory footprint and computational demand. Specifically, we propose deep networks that comprise blocks of units that compete locally to win the representation of each arising new task; competition takes place in a stochastic manner. This type of network organization results in sparse task-specific representations from each network layer; the sparsity pattern is obtained during training and is different among tasks. Crucially, our method sparsifies both the weights and the weight gradients, thus facilitating training on edge devices. This is performed on the grounds of winning probability for each unit in a block. During inference, the network retains only the winning unit and zeroes-out all weights pertaining to non-winning units for the task at hand. Thus, our approach is specifically tailored for deployment on edge devices, providing an efficient and scalable solution for continual learning in resource-limited environments.
DISCOVER: Making Vision Networks Interpretable via Competition and Dissection
Panousis, Konstantinos P., Chatzis, Sotirios
Modern deep networks are highly complex and their inferential outcome very hard to interpret. This is a serious obstacle to their transparent deployment in safety-critical or bias-aware applications. This work contributes to post-hoc interpretability, and specifically Network Dissection. Our goal is to present a framework that makes it easier to discover the individual functionality of each neuron in a network trained on a vision task; discovery is performed in terms of textual description generation. To achieve this objective, we leverage: (i) recent advances in multimodal vision-text models and (ii) network layers founded upon the novel concept of stochastic local competition between linear units. In this setting, only a small subset of layer neurons are activated for a given input, leading to extremely high activation sparsity (as low as only $\approx 4\%$). Crucially, our proposed method infers (sparse) neuron activation patterns that enables the neurons to activate/specialize to inputs with specific characteristics, diversifying their individual functionality. This capacity of our method supercharges the potential of dissection processes: human understandable descriptions are generated only for the very few active neurons, thus facilitating the direct investigation of the network's decision process. As we experimentally show, our approach: (i) yields Vision Networks that retain or improve classification performance, and (ii) realizes a principled framework for text-based description and examination of the generated neuronal representations.
A New Dataset for End-to-End Sign Language Translation: The Greek Elementary School Dataset
Voskou, Andreas, Panousis, Konstantinos P., Partaourides, Harris, Tolias, Kyriakos, Chatzis, Sotirios
Automatic Sign Language Translation (SLT) is a research avenue of great societal impact. End-to-End SLT facilitates the interaction of Hard-of-Hearing (HoH) with hearing people, thus improving their social life and opportunities for participation in social life. However, research within this frame of reference is still in its infancy, and current resources are particularly limited. Existing SLT methods are either of low translation ability or are trained and evaluated on datasets of restricted vocabulary and questionable real-world value. A characteristic example is Phoenix2014T benchmark dataset, which only covers weather forecasts in German Sign Language. To address this shortage of resources, we introduce a newly constructed collection of 29653 Greek Sign Language video-translation pairs which is based on the official syllabus of Greek Elementary School. Our dataset covers a wide range of subjects. We use this novel dataset to train recent state-of-the-art Transformer-based methods widely used in SLT research. Our results demonstrate the potential of our introduced dataset to advance SLT research by offering a favourable balance between usability and real-world value.
Competing Mutual Information Constraints with Stochastic Competition-based Activations for Learning Diversified Representations
Panousis, Konstantinos P., Antoniadis, Anastasios, Chatzis, Sotirios
This work aims to address the long-established problem of learning diversified representations. To this end, we combine information-theoretic arguments with stochastic competition-based activations, namely Stochastic Local Winner-Takes-All (LWTA) units. In this context, we ditch the conventional deep architectures commonly used in Representation Learning, that rely on non-linear activations; instead, we replace them with sets of locally and stochastically competing linear units. In this setting, each network layer yields sparse outputs, determined by the outcome of the competition between units that are organized into blocks of competitors. We adopt stochastic arguments for the competition mechanism, which perform posterior sampling to determine the winner of each block. We further endow the considered networks with the ability to infer the sub-part of the network that is essential for modeling the data at hand; we impose appropriate stick-breaking priors to this end. To further enrich the information of the emerging representations, we resort to information-theoretic principles, namely the Information Competing Process (ICP). Then, all the components are tied together under the stochastic Variational Bayes framework for inference. We perform a thorough experimental investigation for our approach using benchmark datasets on image classification. As we experimentally show, the resulting networks yield significant discriminative representation learning abilities. In addition, the introduced paradigm allows for a principled investigation mechanism of the emerging intermediate network representations.
Stochastic Local Winner-Takes-All Networks Enable Profound Adversarial Robustness
Panousis, Konstantinos P., Chatzis, Sotirios, Theodoridis, Sergios
This work explores the potency of stochastic competition-based activations, namely Stochastic Local Winner-Takes-All (LWTA), against powerful (gradient-based) white-box and black-box adversarial attacks; we especially focus on Adversarial Training settings. In our work, we replace the conventional ReLU-based nonlinearities with blocks comprising locally and stochastically competing linear units. The output of each network layer now yields a sparse output, depending on the outcome of winner sampling in each block. We rely on the Variational Bayesian framework for training and inference; we incorporate conventional PGD-based adversarial training arguments to increase the overall adversarial robustness. As we experimentally show, the arising networks yield state-of-the-art robustness against powerful adversarial attacks while retaining very high classification rate in the benign case.
Dialog speech sentiment classification for imbalanced datasets
Nicolaou, Sergis, Mavrides, Lambros, Tryfou, Georgina, Tolias, Kyriakos, Panousis, Konstantinos, Chatzis, Sotirios, Theodoridis, Sergios
Speech is the most common way humans express their feelings, and sentiment analysis is the use of tools such as natural language processing and computational algorithms to identify the polarity of these feelings. Even though this field has seen tremendous advancements in the last two decades, the task of effectively detecting under represented sentiments in different kinds of datasets is still a challenging task. In this paper, we use single and bi-modal analysis of short dialog utterances and gain insights on the main factors that aid in sentiment detection, particularly in the underrepresented classes, in datasets with and without inherent sentiment component. Furthermore, we propose an architecture which uses a learning rate scheduler and different monitoring criteria and provides state-of-the-art results for the SWITCHBOARD imbalanced sentiment dataset.
Variational Bayesian Sequence-to-Sequence Networks for Memory-Efficient Sign Language Translation
Partaourides, Harris, Voskou, Andreas, Kosmopoulos, Dimitrios, Chatzis, Sotirios, Metaxas, Dimitris N.
Memory-efficient continuous Sign Language Translation is a significant challenge for the development of assisted technologies with real-time applicability for the deaf. In this work, we introduce a paradigm of designing recurrent deep networks whereby the output of the recurrent layer is derived from appropriate arguments from nonparametric statistics. A novel variational Bayesian sequence-to-sequence network architecture is proposed that consists of a) a full Gaussian posterior distribution for data-driven memory compression and b) a nonparametric Indian Buffet Process prior for regularization applied on the Gated Recurrent Unit non-gate weights. We dub our approach Stick-Breaking Recurrent network and show that it can achieve a substantial weight compression without diminishing modeling performance.
Local Competition and Stochasticity for Adversarial Robustness in Deep Learning
Panousis, Konstantinos P., Chatzis, Sotirios, Alexos, Antonios, Theodoridis, Sergios
This work addresses adversarial robustness in deep learning by considering deep networks with stochastic local winner-takes-all (LWTA) nonlinearities. This type of network units result in sparse representations from each model layer, as the units are organized in blocks where only one unit generates non-zero output. The main operating principle of the introduced units lies on stochastic arguments, as the network performs posterior sampling over competing units to select the winner. We combine these LWTA arguments with tools from the field of Bayesian non-parametrics, specifically the stick-breaking construction of the Indian Buffet Process, to allow for inferring the sub-part of each layer that is essential for modeling the data at hand. Inference for the proposed network is performed by means of stochastic variational Bayes. We perform a thorough experimental evaluation of our model using benchmark datasets, assuming gradient-based adversarial attacks. As we show, our method achieves high robustness to adversarial perturbations, with state-of-the-art performance in powerful white-box attacks.
Local Competition and Uncertainty for Adversarial Robustness in Deep Learning
Alexos, Antonios, Panousis, Konstantinos P., Chatzis, Sotirios
This work attempts to address adversarial robustness of deep networks by means of novel learning arguments. Specifically, inspired from results in neuroscience, we propose a local competition principle as a means of adversarially-robust deep learning. We argue that novel local winner-takes-all (LWTA) nonlinearities, combined with posterior sampling schemes, can greatly improve the adversarial robustness of traditional deep networks against difficult adversarial attack schemes. We combine these LWTA arguments with tools from the field of Bayesian non-parametrics, specifically the stick-breaking construction of the Indian Buffet Process, to flexibly account for the inherent uncertainty in data-driven modeling. As we experimentally show, the new proposed model achieves high robustness to adversarial perturbations on MNIST and CIFAR10 datasets. Our model achieves state-of-the-art results in powerful white-box attacks, while at the same time retaining its benign accuracy to a high degree. Equally importantly, our approach achieves this result while requiring far less trainable model parameters than the existing state-of-the-art.