Goto

Collaborating Authors

 Charniak, Eugene


Identifying Differences in Physician Communication Styles with a Log-Linear Transition Component Model

AAAI Conferences

We consider the task of grouping doctors with respect to communication patterns exhibited in outpatient visits. We propose a novel approach toward this end in which we model speech act transitions in conversations via a log-linear model incorporating physician specific components. We train this model over transcripts of outpatient visits annotated with speech act codes and then cluster physicians in (a transformation of) this parameter space. We find significant correlations between the induced groupings and patient survey response data comprising ratings of physician communication. Furthermore, the novel sequential component model we leverage to induce this clustering allows us to explore differences across these groups. This work demonstrates how statistical AI might be used to better understand (and ultimately improve) physician communication.


A New Algorithm for Finding MAP Assignments to Belief Networks

arXiv.org Artificial Intelligence

We present a new algorithm for finding maximum a-posterior) (MAP) assignments of values to belief networks. The belief network is compiled into a network consisting only of nodes with boolean (i.e. only 0 or 1) conditional probabilities. The MAP assignment is then found using a best-first search on the resulting network. We argue that, as one would anticipate, the algorithm is exponential for the general case, but only linear in the size of the network for poly trees.


Plan Recognition in Stories and in Life

arXiv.org Artificial Intelligence

Plan recognition does not work the same way in stories and in "real life" (people tend to jump to conclusions more in stories). We present a theory of this, for the particular case of how objects in stories (or in life) influence plan recognition decisions. We provide a Bayesian network formalization of a simple first-order theory of plans, and show how a particular network parameter seems to govern the difference between "life-like" and "story-like" response. We then show why this parameter would be influenced (in the desired way) by a model of speaker (or author) topic selection which assumes that facts in stories are typically "relevant".


Dynamic Construction of Belief Networks

arXiv.org Artificial Intelligence

We describe a method for incrementally constructing belief networks. We have developed a network-construction language similar to a forward-chaining language using data dependencies, but with additional features for specifying distributions. Using this language, we can define parameterized classes of probabilistic models. These parameterized models make it possible to apply probabilistic reasoning to problems for which it is impractical to have a single large static model.


Statistical Techniques for Natural Language Parsing

AI Magazine

I review current statistical work on syntactic parsing and then consider part-of-speech tagging, which was the first syntactic problem to successfully be attacked by statistical techniques and also serves as a good warm-up for the main topic-statistical parsing. Here, I consider both the simplified case in which the input string is viewed as a string of parts of speech and the more interesting case in which the parser is guided by statistical information about the particular words in the sentence. Finally, I anticipate future research directions.


Statistical Techniques for Natural Language Parsing

AI Magazine

I review current statistical work on syntactic parsing and then consider part-of-speech tagging, which was the first syntactic problem to successfully be attacked by statistical techniques and also serves as a good warm-up for the main topic-statistical parsing. Here, I consider both the simplified case in which the input string is viewed as a string of parts of speech and the more interesting case in which the parser is guided by statistical information about the particular words in the sentence. Finally, I anticipate future research directions.


Bayesian Networks without Tears.

AI Magazine

I give an introduction to Bayesian networks for AI researchers with a limited grounding in probability theory. Indeed, it is probably fair to say that Bayesian networks are to a large segment of the AI-uncertainty community what resolution theorem proving is to the AIlogic community. Nevertheless, despite what seems to be their obvious importance, the ideas and techniques have not spread much beyond the research community responsible for them. I hope to rectify this situation by making Bayesian networks more accessible to the probabilistically unsophisticated.


Bayesian Networks without Tears.

AI Magazine

I give an introduction to Bayesian networks for AI researchers with a limited grounding in probability theory. Over the last few years, this method of reasoning using probabilities has become popular within the AI probability and uncertainty community. Indeed, it is probably fair to say that Bayesian networks are to a large segment of the AI-uncertainty community what resolution theorem proving is to the AIlogic community. Nevertheless, despite what seems to be their obvious importance, the ideas and techniques have not spread much beyond the research community responsible for them. This is probably because the ideas and techniques are not that easy to understand. I hope to rectify this situation by making Bayesian networks more accessible to the probabilistically unsophisticated.