Goto

Collaborating Authors

 Chang, Xiaolin


Less is More: A Stealthy and Efficient Adversarial Attack Method for DRL-based Autonomous Driving Policies

arXiv.org Artificial Intelligence

Despite significant advancements in deep reinforcement learning (DRL)-based autonomous driving policies, these policies still exhibit vulnerability to adversarial attacks. This vulnerability poses a formidable challenge to the practical deployment of these policies in autonomous driving. Designing effective adversarial attacks is an indispensable prerequisite for enhancing the robustness of these policies. In view of this, we present a novel stealthy and efficient adversarial attack method for DRL-based autonomous driving policies. Specifically, we introduce a DRL-based adversary designed to trigger safety violations (e.g., collisions) by injecting adversarial samples at critical moments. We model the attack as a mixed-integer optimization problem and formulate it as a Markov decision process. Then, we train the adversary to learn the optimal policy for attacking at critical moments without domain knowledge. Furthermore, we introduce attack-related information and a trajectory clipping method to enhance the learning capability of the adversary. Finally, we validate our method in an unprotected left-turn scenario across different traffic densities. The experimental results show that our method achieves more than 90% collision rate within three attacks in most cases. Furthermore, our method achieves more than 130% improvement in attack efficiency compared to the unlimited attack method.


CRS-FL: Conditional Random Sampling for Communication-Efficient and Privacy-Preserving Federated Learning

arXiv.org Artificial Intelligence

Federated Learning (FL), a privacy-oriented distributed ML paradigm, is being gaining great interest in Internet of Things because of its capability to protect participants data privacy. Studies have been conducted to address challenges existing in standard FL, including communication efficiency and privacy-preserving. But they cannot achieve the goal of making a tradeoff between communication efficiency and model accuracy while guaranteeing privacy. This paper proposes a Conditional Random Sampling (CRS) method and implements it into the standard FL settings (CRS-FL) to tackle the above-mentioned challenges. CRS explores a stochastic coefficient based on Poisson sampling to achieve a higher probability of obtaining zero-gradient unbiasedly, and then decreases the communication overhead effectively without model accuracy degradation. Moreover, we dig out the relaxation Local Differential Privacy (LDP) guarantee conditions of CRS theoretically. Extensive experiment results indicate that (1) in communication efficiency, CRS-FL performs better than the existing methods in metric accuracy per transmission byte without model accuracy reduction in more than 7% sampling ratio (# sampling size / # model size); (2) in privacy-preserving, CRS-FL achieves no accuracy reduction compared with LDP baselines while holding the efficiency, even exceeding them in model accuracy under more sampling ratio conditions.


Generalizing Adversarial Examples by AdaBelief Optimizer

arXiv.org Artificial Intelligence

Recent research has proved that deep neural networks (DNNs) are vulnerable to adversarial examples, the legitimate input added with imperceptible and well-designed perturbations can fool DNNs easily in the testing stage. However, most of the existing adversarial attacks are difficult to fool adversarially trained models. To solve this issue, we propose an AdaBelief iterative Fast Gradient Sign Method (AB-FGSM) to generalize adversarial examples. By integrating AdaBelief optimization algorithm to I-FGSM, we believe that the generalization of adversarial examples will be improved, relying on the strong generalization of AdaBelief optimizer. To validate the effectiveness and transferability of adversarial examples generated by our proposed AB-FGSM, we conduct the white-box and black-box attacks on various single models and ensemble models. Compared with state-of-the-art attack methods, our proposed method can generate adversarial examples effectively in the white-box setting, and the transfer rate is 7%-21% higher than latest attack methods.