Chang, Xiao-Wen
Resona: Improving Context Copying in Linear Recurrence Models with Retrieval
Wang, Xinyu, Ma, Linrui, Huang, Jerry, Lu, Peng, Parthasarathi, Prasanna, Chang, Xiao-Wen, Chen, Boxing, Cui, Yufei
Recent shifts in the space of large language model (LLM) research have shown an increasing focus on novel architectures to compete with prototypical Transformer-based models that have long dominated this space. Linear recurrent models have proven to be a viable competitor due to their computational efficiency. However, such models still demonstrate a sizable gap compared to Transformers in terms of in-context learning among other tasks that require recalling information from a context. In this work, we introduce __Resona__, a simple and scalable framework for augmenting linear recurrent models with retrieval. __Resona__~augments models with the ability to integrate retrieved information from the provided input context, enabling tailored behavior to diverse task requirements. Experiments on a variety of linear recurrent models demonstrate that __Resona__-augmented models observe significant performance gains on a variety of synthetic as well as real-world natural language tasks, highlighting its ability to act as a general purpose method to improve the in-context learning and language modeling abilities of linear recurrent LLMs.
The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges
Luan, Sitao, Hua, Chenqing, Lu, Qincheng, Ma, Liheng, Wu, Lirong, Wang, Xinyu, Xu, Minkai, Chang, Xiao-Wen, Precup, Doina, Ying, Rex, Li, Stan Z., Tang, Jian, Wolf, Guy, Jegelka, Stefanie
Homophily principle, \ie{} nodes with the same labels or similar attributes are more likely to be connected, has been commonly believed to be the main reason for the superiority of Graph Neural Networks (GNNs) over traditional Neural Networks (NNs) on graph-structured data, especially on node-level tasks. However, recent work has identified a non-trivial set of datasets where GNN's performance compared to the NN's is not satisfactory. Heterophily, i.e. low homophily, has been considered the main cause of this empirical observation. People have begun to revisit and re-evaluate most existing graph models, including graph transformer and its variants, in the heterophily scenario across various kinds of graphs, e.g. heterogeneous graphs, temporal graphs and hypergraphs. Moreover, numerous graph-related applications are found to be closely related to the heterophily problem. In the past few years, considerable effort has been devoted to studying and addressing the heterophily issue. In this survey, we provide a comprehensive review of the latest progress on heterophilic graph learning, including an extensive summary of benchmark datasets and evaluation of homophily metrics on synthetic graphs, meticulous classification of the most updated supervised and unsupervised learning methods, thorough digestion of the theoretical analysis on homophily/heterophily, and broad exploration of the heterophily-related applications. Notably, through detailed experiments, we are the first to categorize benchmark heterophilic datasets into three sub-categories: malignant, benign and ambiguous heterophily. Malignant and ambiguous datasets are identified as the real challenging datasets to test the effectiveness of new models on the heterophily challenge. Finally, we propose several challenges and future directions for heterophilic graph representation learning.
GCEPNet: Graph Convolution-Enhanced Expectation Propagation for Massive MIMO Detection
Lu, Qincheng, Luan, Sitao, Chang, Xiao-Wen
Massive MIMO (multiple-input multiple-output) detection is an important topic in wireless communication and various machine learning based methods have been developed recently for this task. Expectation propagation (EP) and its variants are widely used for MIMO detection and have achieved the best performance. However, EP-based solvers fail to capture the correlation between unknown variables, leading to loss of information, and in addition, they are computationally expensive. In this paper, we show that the real-valued system can be modeled as spectral signal convolution on graph, through which the correlation between unknown variables can be captured. Based on this analysis, we propose graph convolution-enhanced expectation propagation (GCEPNet), a graph convolution-enhanced EP detector. GCEPNet incorporates data-dependent attention scores into Chebyshev polynomial for powerful graph convolution with better generalization capacity. It enables a better estimation of the cavity distribution for EP and empirically achieves the state-of-the-art (SOTA) MIMO detection performance with much faster inference speed. To our knowledge, we are the first to shed light on the connection between the system model and graph convolution, and the first to design the data-dependent attention scores for graph convolution.
Representation Learning on Heterophilic Graph with Directional Neighborhood Attention
Lu, Qincheng, Zhu, Jiaqi, Luan, Sitao, Chang, Xiao-Wen
Graph Attention Network (GAT) is one of the most popular Graph Neural Network (GNN) architecture, which employs the attention mechanism to learn edge weights and has demonstrated promising performance in various applications. However, since it only incorporates information from immediate neighborhood, it lacks the ability to capture long-range and global graph information, leading to unsatisfactory performance on some datasets, particularly on heterophilic graphs. To address this limitation, we propose the Directional Graph Attention Network (DGAT) in this paper. DGAT is able to combine the feature-based attention with the global directional information extracted from the graph topology. To this end, a new class of Laplacian matrices is proposed which can provably reduce the diffusion distance between nodes. Based on the new Laplacian, topology-guided neighbour pruning and edge adding mechanisms are proposed to remove the noisy and capture the helpful long-range neighborhood information. Besides, a global directional attention is designed to enable a topological-aware information propagation. The superiority of the proposed DGAT over the baseline GAT has also been verified through experiments on real-world benchmarks and synthetic data sets. It also outperforms the state-of-the-art (SOTA) models on 6 out of 7 real-world benchmark datasets.
When Do Graph Neural Networks Help with Node Classification? Investigating the Impact of Homophily Principle on Node Distinguishability
Luan, Sitao, Hua, Chenqing, Xu, Minkai, Lu, Qincheng, Zhu, Jiaqi, Chang, Xiao-Wen, Fu, Jie, Leskovec, Jure, Precup, Doina
Homophily principle, i.e., nodes with the same labels are more likely to be connected, has been believed to be the main reason for the performance superiority of Graph Neural Networks (GNNs) over Neural Networks on node classification tasks. Recent research suggests that, even in the absence of homophily, the advantage of GNNs still exists as long as nodes from the same class share similar neighborhood patterns. However, this argument only considers intra-class Node Distinguishability (ND) but neglects inter-class ND, which provides incomplete understanding of homophily on GNNs. In this paper, we first demonstrate such deficiency with examples and argue that an ideal situation for ND is to have smaller intra-class ND than inter-class ND. To formulate this idea and study ND deeply, we propose Contextual Stochastic Block Model for Homophily (CSBM-H) and define two metrics, Probabilistic Bayes Error (PBE) and negative generalized Jeffreys divergence, to quantify ND. With the metrics, we visualize and analyze how graph filters, node degree distributions and class variances influence ND, and investigate the combined effect of intra- and inter-class ND. Besides, we discovered the mid-homophily pitfall, which occurs widely in graph datasets. Furthermore, we verified that, in real-work tasks, the superiority of GNNs is indeed closely related to both intra- and inter-class ND regardless of homophily levels. Grounded in this observation, we propose a new hypothesis-testing based performance metric beyond homophily, which is non-linear, feature-based and can provide statistical threshold value for GNNs' the superiority. Experiments indicate that it is significantly more effective than the existing homophily metrics on revealing the advantage and disadvantage of graph-aware modes on both synthetic and benchmark real-world datasets.
When Do We Need Graph Neural Networks for Node Classification?
Luan, Sitao, Hua, Chenqing, Lu, Qincheng, Zhu, Jiaqi, Chang, Xiao-Wen, Precup, Doina
Graph Neural Networks (GNNs) extend basic Neural Networks (NNs) by additionally making use of graph structure based on the relational inductive bias (edge bias), rather than treating the nodes as collections of independent and identically distributed (i.i.d.) samples. Though GNNs are believed to outperform basic NNs in real-world tasks, it is found that in some cases, GNNs have little performance gain or even underperform graph-agnostic NNs. To identify these cases, based on graph signal processing and statistical hypothesis testing, we propose two measures which analyze the cases in which the edge bias in features and labels does not provide advantages. Based on the measures, a threshold value can be given to predict the potential performance advantages of graph-aware models over graph-agnostic models.
Robust, High-Precision GNSS Carrier-Phase Positioning with Visual-Inertial Fusion
Dong, Erqun, Sheriffdeen, Sheroze, Yang, Shichao, Dong, Jing, De Nardi, Renzo, Ren, Carl, Chang, Xiao-Wen, Liu, Xue, Wang, Zijian
Robust, high-precision global localization is fundamental to a wide range of outdoor robotics applications. Conventional fusion methods use low-accuracy pseudorange based GNSS measurements ($>>5m$ errors) and can only yield a coarse registration to the global earth-centered-earth-fixed (ECEF) frame. In this paper, we leverage high-precision GNSS carrier-phase positioning and aid it with local visual-inertial odometry (VIO) tracking using an extended Kalman filter (EKF) framework that better resolves the integer ambiguity concerned with GNSS carrier-phase. %to achieve centimeter-level accuracy in the ECEF frame. We also propose an algorithm for accurate GNSS-antenna-to-IMU extrinsics calibration to accurately align VIO to the ECEF frame. Together, our system achieves robust global positioning demonstrated by real-world hardware experiments in severely occluded urban canyons, and outperforms the state-of-the-art RTKLIB by a significant margin in terms of integer ambiguity solution fix rate and positioning RMSE accuracy.
Complete the Missing Half: Augmenting Aggregation Filtering with Diversification for Graph Convolutional Neural Networks
Luan, Sitao, Zhao, Mingde, Hua, Chenqing, Chang, Xiao-Wen, Precup, Doina
The core operation of current Graph Neural Networks (GNNs) is the aggregation enabled by the graph Laplacian or message passing, which filters the neighborhood information of nodes. Though effective for various tasks, in this paper, we show that they are potentially a problematic factor underlying all GNN models for learning on certain datasets, as they force the node representations similar, making the nodes gradually lose their identity and become indistinguishable. Hence, we augment the aggregation operations with their dual, i.e., diversification operators that make the node more distinct and preserve the identity. Such augmentation replaces the aggregation with a two-channel filtering process that, in theory, is beneficial for enriching the node representations. In practice, the proposed two-channel filters can be easily patched on existing GNN methods with diverse training strategies, including spectral and spatial (message passing) methods. In the experiments, we observe desired characteristics of the models and significant performance boost upon the baselines on 9 node classification tasks.
Complete the Missing Half: Augmenting Aggregation Filtering with Diversification for Graph Convolutional Networks
Luan, Sitao, Zhao, Mingde, Hua, Chenqing, Chang, Xiao-Wen, Precup, Doina
The core operation of current Graph Neural Networks (GNNs) is the aggregation enabled by the graph Laplacian or message passing, which filters the neighborhood node information. Though effective for various tasks, in this paper, we show that they are potentially a problematic factor underlying all GNN methods for learning on certain datasets, as they force the node representations similar, making the nodes gradually lose their identity and become indistinguishable. Hence, we augment the aggregation operations with their dual, i.e. diversification operators that make the node more distinct and preserve the identity. Such augmentation replaces the aggregation with a two-channel filtering process that, in theory, is beneficial for enriching the node representations. In practice, the proposed two-channel filters can be easily patched on existing GNN methods with diverse training strategies, including spectral and spatial (message passing) methods. In the experiments, we observe desired characteristics of the models and significant performance boost upon the baselines on 9 node classification tasks.
Training Matters: Unlocking Potentials of Deeper Graph Convolutional Neural Networks
Luan, Sitao, Zhao, Mingde, Chang, Xiao-Wen, Precup, Doina
The performance limit of Graph Convolutional Networks (GCNs) and the fact that we cannot stack more of them to increase the performance, which we usually do for other deep learning paradigms, are pervasively thought to be caused by the limitations of the GCN layers, including insufficient expressive power, etc.. However, if so, for a fixed architecture, it would be unlikely to lower the training difficulty and to improve performance by changing only the training procedure, which we show in this paper not only possible but possible in several ways. This paper first identify the training difficulty of GCNs from the perspective of graph signal energy loss. More specifically, we find that the loss of energy in the backward pass during training nullifies the learning of the layers closer to the input. Then, we propose several methodologies to mitigate the training problem by slightly modifying the GCN operator, from the energy perspective. After empirical validation, we confirm that these changes of operator lead to significant decrease in the training difficulties and notable performance boost, without changing the composition of parameters. With these, we conclude that the root cause of the problem is more likely the training difficulty than the others.