Goto

Collaborating Authors

 Chang, Trenton


Machine Learning for Health symposium 2024 -- Findings track

arXiv.org Artificial Intelligence

A collection of the accepted Findings papers that were presented at the 4th Machine Learning for Health symposium (ML4H 2024), which was held on December 15-16, 2024, in Vancouver, BC, Canada. ML4H 2024 invited high-quality submissions describing innovative research in a variety of health-related disciplines including healthcare, biomedicine, and public health. Works could be submitted to either the archival Proceedings track, or the non-archival Findings track. The Proceedings track targeted mature, cohesive works with technical sophistication and high-impact relevance to health. The Findings track promoted works that would spark new insights, collaborations, and discussions at ML4H. Both tracks were given the opportunity to share their work through the in-person poster session. All the manuscripts submitted to ML4H Symposium underwent a double-blind peer-review process.


Recent Advances, Applications and Open Challenges in Machine Learning for Health: Reflections from Research Roundtables at ML4H 2024 Symposium

arXiv.org Artificial Intelligence

The fourth Machine Learning for Health (ML4H) symposium was held in person on December 15th and 16th, 2024, in the traditional, ancestral, and unceded territories of the Musqueam, Squamish, and Tsleil-Waututh Nations in Vancouver, British Columbia, Canada. The symposium included research roundtable sessions to foster discussions between participants and senior researchers on timely and relevant topics for the ML4H community. The organization of the research roundtables at the conference involved 13 senior and 27 junior chairs across 13 tables. Each roundtable session included an invited senior chair (with substantial experience in the field), junior chairs (responsible for facilitating the discussion), and attendees from diverse backgrounds with an interest in the session's topic.


Who's Gaming the System? A Causally-Motivated Approach for Detecting Strategic Adaptation

arXiv.org Artificial Intelligence

In many settings, machine learning models may be used to inform decisions that impact individuals or entities who interact with the model. Such entities, or agents, may game model decisions by manipulating their inputs to the model to obtain better outcomes and maximize some utility. We consider a multi-agent setting where the goal is to identify the "worst offenders:" agents that are gaming most aggressively. However, identifying such agents is difficult without knowledge of their utility function. Thus, we introduce a framework in which each agent's tendency to game is parameterized via a scalar. We show that this gaming parameter is only partially identifiable. By recasting the problem as a causal effect estimation problem where different agents represent different "treatments," we prove that a ranking of all agents by their gaming parameters is identifiable. We present empirical results in a synthetic data study validating the usage of causal effect estimation for gaming detection and show in a case study of diagnosis coding behavior in the U.S. that our approach highlights features associated with gaming.


From Biased Selective Labels to Pseudo-Labels: An Expectation-Maximization Framework for Learning from Biased Decisions

arXiv.org Machine Learning

Selective labels occur when label observations are subject to a decision-making process; e.g., diagnoses that depend on the administration of laboratory tests. We study a clinically-inspired selective label problem called disparate censorship, where labeling biases vary across subgroups and unlabeled individuals are imputed as "negative" (i.e., no diagnostic test = no illness). Machine learning models naively trained on such labels could amplify labeling bias. Inspired by causal models of selective labels, we propose Disparate Censorship Expectation-Maximization (DCEM), an algorithm for learning in the presence of disparate censorship. We theoretically analyze how DCEM mitigates the effects of disparate censorship on model performance. We validate DCEM on synthetic data, showing that it improves bias mitigation (area between ROC curves) without sacrificing discriminative performance (AUC) compared to baselines. We achieve similar results in a sepsis classification task using clinical data.


Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models

arXiv.org Artificial Intelligence

Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG-bench). BIG-bench currently consists of 204 tasks, contributed by 450 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood development, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.