Chang, Eric I.
Using Voice Transformations to Create Additional Training Talkers for Word Spotting
Chang, Eric I., Lippmann, Richard P.
Lack of training data has always been a constraint in training speech recognizers. This research presents a voice transformation technique which increases the variety among training talkers. The resulting more varied training set provided up to 2.9 percentage points of improvement in the figure of merit (average detection rate) of a high performance word spotter. This improvement is similar to the increase in performance provided by doubling the amount of training data (Carlson, 1994). This technique can also be applied to other speech recognition systems such as continuous speech recognition, talker identification, and isolated speech recognition.
Using Voice Transformations to Create Additional Training Talkers for Word Spotting
Chang, Eric I., Lippmann, Richard P.
Lack of training data has always been a constraint in training speech recognizers. This research presentsa voice transformation technique which increases the variety among training talkers. The resulting more varied training set provided up to 2.9 percentage points of improvement in the figure of merit (average detection rate) of a high performance word spotter. This improvement is similar to the increase in performance provided by doubling the amount of training data (Carlson, 1994). This technique can also be applied to other speech recognition systems such as continuous speech recognition, talker identification, and isolated speech recognition.
Using Voice Transformations to Create Additional Training Talkers for Word Spotting
Chang, Eric I., Lippmann, Richard P.
Lack of training data has always been a constraint in training speech recognizers. This research presents a voice transformation technique which increases the variety among training talkers. The resulting more varied training set provided up to 2.9 percentage points of improvement in the figure of merit (average detection rate) of a high performance word spotter. This improvement is similar to the increase in performance provided by doubling the amount of training data (Carlson, 1994). This technique can also be applied to other speech recognition systems such as continuous speech recognition, talker identification, and isolated speech recognition.
Figure of Merit Training for Detection and Spotting
Chang, Eric I., Lippmann, Richard P.
Spotting tasks require detection of target patterns from a background of richly varied non-target inputs. The performance measure of interest for these tasks, called the figure of merit (FOM), is the detection rate for target patterns when the false alarm rate is in an acceptable range. A new approach to training spotters is presented which computes the FOM gradient for each input pattern and then directly maximizes the FOM using b ackpropagati on. This eliminates the need for thresholds during training. It also uses network resources to model Bayesian a posteriori probability functions accurately only for patterns which have a significant effect on the detection accuracy over the false alarm rate of interest. FOM training increased detection accuracy by 5 percentage points for a hybrid radial basis function (RBF) - hidden Markov model (HMM) wordspotter on the credit-card speech corpus.
Figure of Merit Training for Detection and Spotting
Chang, Eric I., Lippmann, Richard P.
Spotting tasks require detection of target patterns from a background of richly varied non-target inputs. The performance measure of interest for these tasks, called the figure of merit (FOM), is the detection rate for target patterns when the false alarm rate is in an acceptable range. A new approach to training spotters is presented which computes the FOM gradient for each input pattern and then directly maximizes the FOM using b ackpropagati on. This eliminates the need for thresholds during training. It also uses network resources to model Bayesian a posteriori probability functions accurately only for patterns which have a significant effect on the detection accuracy over the false alarm rate of interest. FOM training increased detection accuracy by 5 percentage points for a hybrid radial basis function (RBF) - hidden Markov model (HMM) wordspotter on the credit-card speech corpus.
Figure of Merit Training for Detection and Spotting
Chang, Eric I., Lippmann, Richard P.
Spotting tasks require detection of target patterns from a background of richly varied non-target inputs. The performance measure of interest for these tasks, called the figure of merit (FOM), is the detection rate for target patterns when the false alarm rate is in an acceptable range. A new approach to training spotters is presented which computes the FOM gradient for each input pattern and then directly maximizes the FOM using backpropagation. This eliminates the need for thresholds during training. It also uses network resources to model Bayesian a posteriori probability functions accurately only for patterns which have a significant effect on the detection accuracy over the false alarm rate of interest.
A Boundary Hunting Radial Basis Function Classifier which Allocates Centers Constructively
Chang, Eric I., Lippmann, Richard P.
A new boundary hunting radial basis function (BH-RBF) classifier which allocates RBF centers constructively near class boundaries is described. This classifier creates complex decision boundaries only in regions where confusions occur and corresponding RBF outputs are similar. A predicted square error measure is used to determine how many centers to add and to determine when to stop adding centers. Two experiments are presented which demonstrate the advantages of the BH RBF classifier. One uses artificial data with two classes and two input features where each class contains four clusters but only one cluster is near a decision region boundary.
A Boundary Hunting Radial Basis Function Classifier which Allocates Centers Constructively
Chang, Eric I., Lippmann, Richard P.
A new boundary hunting radial basis function (BH-RBF) classifier which allocates RBF centers constructively near class boundaries is described. This classifier creates complex decision boundaries only in regions where confusions occur and corresponding RBF outputs are similar. A predicted square error measure is used to determine how many centers to add and to determine when to stop adding centers. Two experiments are presented which demonstrate the advantages of the BH RBF classifier. One uses artificial data with two classes and two input features where each class contains four clusters but only one cluster is near a decision region boundary.
Using Genetic Algorithms to Improve Pattern Classification Performance
Chang, Eric I., Lippmann, Richard P.
Feature selection and creation are two of the most important and difficult tasks in the field of pattern classification. Good features improve the performance of both conventional and neural network pattern classifiers. Exemplar selection is another task that can reduce the memory and computation requirements of a KNN classifier.
Using Genetic Algorithms to Improve Pattern Classification Performance
Chang, Eric I., Lippmann, Richard P.
Feature selection and creation are two of the most important and difficult tasks in the field of pattern classification. Good features improve the performance of both conventional and neural network pattern classifiers. Exemplar selection is another task that can reduce the memory and computation requirements of a KNN classifier. These three tasks require a search through a space which is typically so large that 797 798 Chang and Lippmann exhaustive search is impractical. The purpose of this research was to explore the usefulness of Genetic search algorithms for these tasks.