Using Genetic Algorithms to Improve Pattern Classification Performance
Chang, Eric I., Lippmann, Richard P.
–Neural Information Processing Systems
Feature selection and creation are two of the most important and difficult tasks in the field of pattern classification. Good features improve the performance of both conventional and neural network pattern classifiers. Exemplar selection is another task that can reduce the memory and computation requirements of a KNN classifier. These three tasks require a search through a space which is typically so large that 797 798 Chang and Lippmann exhaustive search is impractical. The purpose of this research was to explore the usefulness of Genetic search algorithms for these tasks.
Neural Information Processing Systems
Dec-31-1991