Chang, Che-Jui
CASIM: Composite Aware Semantic Injection for Text to Motion Generation
Chang, Che-Jui, Liu, Qingze Tony, Zhou, Honglu, Pavlovic, Vladimir, Kapadia, Mubbasir
Recent advances in generative modeling and tokenization have driven significant progress in text-to-motion generation, leading to enhanced quality and realism in generated motions. However, effectively leveraging textual information for conditional motion generation remains an open challenge. We observe that current approaches, primarily relying on fixed-length text embeddings (e.g., CLIP) for global semantic injection, struggle to capture the composite nature of human motion, resulting in suboptimal motion quality and controllability. To address this limitation, we propose the Composite Aware Semantic Injection Mechanism (CASIM), comprising a composite-aware semantic encoder and a text-motion aligner that learns the dynamic correspondence between text and motion tokens. Notably, CASIM is model and representation-agnostic, readily integrating with both autoregressive and diffusion-based methods. Experiments on HumanML3D and KIT benchmarks demonstrate that CASIM consistently improves motion quality, text-motion alignment, and retrieval scores across state-of-the-art methods. Qualitative analyses further highlight the superiority of our composite-aware approach over fixed-length semantic injection, enabling precise motion control from text prompts and stronger generalization to unseen text inputs.
BattleAgent: Multi-modal Dynamic Emulation on Historical Battles to Complement Historical Analysis
Lin, Shuhang, Hua, Wenyue, Li, Lingyao, Chang, Che-Jui, Fan, Lizhou, Ji, Jianchao, Hua, Hang, Jin, Mingyu, Luo, Jiebo, Zhang, Yongfeng
This paper presents BattleAgent, an emulation system that combines the Large Vision-Language Model and Multi-agent System. This novel system aims to simulate complex dynamic interactions among multiple agents, as well as between agents and their environments, over a period of time. It emulates both the decision-making processes of leaders and the viewpoints of ordinary participants, such as soldiers. The emulation showcases the current capabilities of agents, featuring fine-grained multi-modal interactions between agents and landscapes. It develops customizable agent structures to meet specific situational requirements, for example, a variety of battle-related activities like scouting and trench digging. These components collaborate to recreate historical events in a lively and comprehensive manner while offering insights into the thoughts and feelings of individuals from diverse viewpoints. The technological foundations of BattleAgent establish detailed and immersive settings for historical battles, enabling individual agents to partake in, observe, and dynamically respond to evolving battle scenarios. This methodology holds the potential to substantially deepen our understanding of historical events, particularly through individual accounts. Such initiatives can also aid historical research, as conventional historical narratives often lack documentation and prioritize the perspectives of decision-makers, thereby overlooking the experiences of ordinary individuals. BattelAgent illustrates AI's potential to revitalize the human aspect in crucial social events, thereby fostering a more nuanced collective understanding and driving the progressive development of human society.
On the Equivalency, Substitutability, and Flexibility of Synthetic Data
Chang, Che-Jui, Li, Danrui, Moon, Seonghyeon, Kapadia, Mubbasir
We study, from an empirical standpoint, the efficacy of synthetic data in real-world scenarios. Leveraging synthetic data for training perception models has become a key strategy embraced by the community due to its efficiency, scalability, perfect annotations, and low costs. Despite proven advantages, few studies put their stress on how to efficiently generate synthetic datasets to solve real-world problems and to what extent synthetic data can reduce the effort for real-world data collection. To answer the questions, we systematically investigate several interesting properties of synthetic data -- the equivalency of synthetic data to real-world data, the substitutability of synthetic data for real data, and the flexibility of synthetic data generators to close up domain gaps. Leveraging the M3Act synthetic data generator, we conduct experiments on DanceTrack and MOT17. Our results suggest that synthetic data not only enhances model performance but also demonstrates substitutability for real data, with 60% to 80% replacement without performance loss. In addition, our study of the impact of synthetic data distributions on downstream performance reveals the importance of flexible data generators in narrowing domain gaps for improved model adaptability.
The Importance of Multimodal Emotion Conditioning and Affect Consistency for Embodied Conversational Agents
Chang, Che-Jui, Sohn, Samuel S., Zhang, Sen, Jayashankar, Rajath, Usman, Muhammad, Kapadia, Mubbasir
Previous studies regarding the perception of emotions for embodied virtual agents have shown the effectiveness of using virtual characters in conveying emotions through interactions with humans. However, creating an autonomous embodied conversational agent with expressive behaviors presents two major challenges. The first challenge is the difficulty of synthesizing the conversational behaviors for each modality that are as expressive as real human behaviors. The second challenge is that the affects are modeled independently, which makes it difficult to generate multimodal responses with consistent emotions across all modalities. In this work, we propose a conceptual framework, ACTOR (Affect-Consistent mulTimodal behaviOR generation), that aims to increase the perception of affects by generating multimodal behaviors conditioned on a consistent driving affect. We have conducted a user study with 199 participants to assess how the average person judges the affects perceived from multimodal behaviors that are consistent and inconsistent with respect to a driving affect. The result shows that among all model conditions, our affect-consistent framework receives the highest Likert scores for the perception of driving affects. Our statistical analysis suggests that making a modality affect-inconsistent significantly decreases the perception of driving affects. We also observe that multimodal behaviors conditioned on consistent affects are more expressive compared to behaviors with inconsistent affects. Therefore, we conclude that multimodal emotion conditioning and affect consistency are vital to enhancing the perception of affects for embodied conversational agents.
Learning from Synthetic Human Group Activities
Chang, Che-Jui, Li, Danrui, Patel, Deep, Goel, Parth, Zhou, Honglu, Moon, Seonghyeon, Sohn, Samuel S., Yoon, Sejong, Pavlovic, Vladimir, Kapadia, Mubbasir
The study of complex human interactions and group activities has become a focal point in human-centric computer vision. However, progress in related tasks is often hindered by the challenges of obtaining large-scale labeled datasets from real-world scenarios. To address the limitation, we introduce M3Act, a synthetic data generator for multi-view multi-group multi-person human atomic actions and group activities. Powered by the Unity engine, M3Act features multiple semantic groups, highly diverse and photorealistic images, and a comprehensive set of annotations, which facilitates the learning of human-centered tasks across single-person, multi-person, and multi-group conditions. We demonstrate the advantages of M3Act across three core experiments using various input modalities. First, adding our synthetic data significantly improves the performance of MOTRv2 on DanceTrack, leading to a hop on the leaderboard from 10th to 2nd place. With M3Act, we achieve tracking results on par with MOTRv2*, which is trained with 62.5% more real-world data. Second, M3Act improves the benchmark performances on CAD2 by 5.59% and 7.43% on group activity and atomic action accuracy respectively. Moreover, M3Act opens new research for controllable 3D group activity generation. We define multiple metrics and propose a competitive baseline for the novel task.