Chandu, Khyathi
AI as Humanity's Salieri: Quantifying Linguistic Creativity of Language Models via Systematic Attribution of Machine Text against Web Text
Lu, Ximing, Sclar, Melanie, Hallinan, Skyler, Mireshghallah, Niloofar, Liu, Jiacheng, Han, Seungju, Ettinger, Allyson, Jiang, Liwei, Chandu, Khyathi, Dziri, Nouha, Choi, Yejin
Creativity has long been considered one of the most difficult aspect of human intelligence for AI to mimic. However, the rise of Large Language Models (LLMs), like ChatGPT, has raised questions about whether AI can match or even surpass human creativity. We present CREATIVITY INDEX as the first step to quantify the linguistic creativity of a text by reconstructing it from existing text snippets on the web. CREATIVITY INDEX is motivated by the hypothesis that the seemingly remarkable creativity of LLMs may be attributable in large part to the creativity of human-written texts on the web. To compute CREATIVITY INDEX efficiently, we introduce DJ SEARCH, a novel dynamic programming algorithm that can search verbatim and near-verbatim matches of text snippets from a given document against the web. Experiments reveal that the CREATIVITY INDEX of professional human authors is on average 66.2% higher than that of LLMs, and that alignment reduces the CREATIVITY INDEX of LLMs by an average of 30.1%. In addition, we find that distinguished authors like Hemingway exhibit measurably higher CREATIVITY INDEX compared to other human writers. Finally, we demonstrate that CREATIVITY INDEX can be used as a surprisingly effective criterion for zero-shot machine text detection, surpassing the strongest existing zero-shot system, DetectGPT, by a significant margin of 30.2%, and even outperforming the strongest supervised system, GhostBuster, in five out of six domains.
RESTOR: Knowledge Recovery through Machine Unlearning
Rezaei, Keivan, Chandu, Khyathi, Feizi, Soheil, Choi, Yejin, Brahman, Faeze, Ravichander, Abhilasha
Large language models trained on web-scale corpora can memorize undesirable datapoints such as incorrect facts, copyrighted content or sensitive data. Recently, many machine unlearning algorithms have been proposed that aim to `erase' these datapoints from trained models -- that is, revert model behavior to be similar to a model that had never been trained on these datapoints. However, evaluating the success of unlearning algorithms remains an open challenge. In this work, we propose the RESTOR framework for machine unlearning, which evaluates the ability of unlearning algorithms to perform targeted data erasure from models, by evaluating the ability of models to forget the knowledge introduced in these data points, while simultaneously recovering the model's knowledge state had it not encountered these datapoints. RESTOR helps uncover several novel insights about popular unlearning algorithms, and the mechanisms through which they operate -- for instance, identifying that some algorithms merely emphasize forgetting, and that localizing unlearning targets can enhance unlearning performance.
The Art of Saying No: Contextual Noncompliance in Language Models
Brahman, Faeze, Kumar, Sachin, Balachandran, Vidhisha, Dasigi, Pradeep, Pyatkin, Valentina, Ravichander, Abhilasha, Wiegreffe, Sarah, Dziri, Nouha, Chandu, Khyathi, Hessel, Jack, Tsvetkov, Yulia, Smith, Noah A., Choi, Yejin, Hajishirzi, Hannaneh
Chat-based language models are designed to be helpful, yet they should not comply with every user request. While most existing work primarily focuses on refusal of "unsafe" queries, we posit that the scope of noncompliance should be broadened. We introduce a comprehensive taxonomy of contextual noncompliance describing when and how models should not comply with user requests. Our taxonomy spans a wide range of categories including incomplete, unsupported, indeterminate, and humanizing requests (in addition to unsafe requests). To test noncompliance capabilities of language models, we use this taxonomy to develop a new evaluation suite of 1000 noncompliance prompts. We find that most existing models show significantly high compliance rates in certain previously understudied categories with models like GPT-4 incorrectly complying with as many as 30% of requests. To address these gaps, we explore different training strategies using a synthetically-generated training set of requests and expected noncompliant responses. Our experiments demonstrate that while direct finetuning of instruction-tuned models can lead to both over-refusal and a decline in general capabilities, using parameter efficient methods like low rank adapters helps to strike a good balance between appropriate noncompliance and other capabilities.
RewardBench: Evaluating Reward Models for Language Modeling
Lambert, Nathan, Pyatkin, Valentina, Morrison, Jacob, Miranda, LJ, Lin, Bill Yuchen, Chandu, Khyathi, Dziri, Nouha, Kumar, Sachin, Zick, Tom, Choi, Yejin, Smith, Noah A., Hajishirzi, Hannaneh
Reward models (RMs) are at the crux of successfully using RLHF to align pretrained models to human preferences, yet there has been relatively little study that focuses on evaluation of those models. Evaluating reward models presents an opportunity to understand the opaque technologies used for alignment of language models and which values are embedded in them. Resources for reward model training and understanding are sparse in the nascent open-source community around them. To enhance scientific understanding of reward models, we present RewardBench, a benchmark dataset and code-base for evaluation. The RewardBench dataset is a collection of prompt-chosen-rejected trios spanning chat, reasoning, and safety, to benchmark how reward models perform on challenging, structured and out-of-distribution queries. We create specific comparison datasets for RMs that have subtle, but verifiable reasons (e.g. bugs, incorrect facts) why one answer should be preferred to another. On the RewardBench leaderboard, we evaluate reward models trained with a variety of methods, such as the direct MLE training of classifiers and the implicit reward modeling of Direct Preference Optimization (DPO). We present many findings on propensity for refusals, reasoning limitations, and instruction following shortcomings of various reward models towards a better understanding of the RLHF process.
WildBench: Benchmarking LLMs with Challenging Tasks from Real Users in the Wild
Lin, Bill Yuchen, Deng, Yuntian, Chandu, Khyathi, Brahman, Faeze, Ravichander, Abhilasha, Pyatkin, Valentina, Dziri, Nouha, Bras, Ronan Le, Choi, Yejin
We introduce WildBench, an automated evaluation framework designed to benchmark large language models (LLMs) using challenging, real-world user queries. WildBench consists of 1,024 tasks carefully selected from over one million human-chatbot conversation logs. For automated evaluation with WildBench, we have developed two metrics, WB-Reward and WB-Score, which are computable using advanced LLMs such as GPT-4-turbo. WildBench evaluation uses task-specific checklists to evaluate model outputs systematically and provides structured explanations that justify the scores and comparisons, resulting in more reliable and interpretable automatic judgments. WB-Reward employs fine-grained pairwise comparisons between model responses, generating five potential outcomes: much better, slightly better, slightly worse, much worse, or a tie. Unlike previous evaluations that employed a single baseline model, we selected three baseline models at varying performance levels to ensure a comprehensive pairwise evaluation. Additionally, we propose a simple method to mitigate length bias, by converting outcomes of ``slightly better/worse'' to ``tie'' if the winner response exceeds the loser one by more than $K$ characters. WB-Score evaluates the quality of model outputs individually, making it a fast and cost-efficient evaluation metric. WildBench results demonstrate a strong correlation with the human-voted Elo ratings from Chatbot Arena on hard tasks. Specifically, WB-Reward achieves a Pearson correlation of 0.98 with top-ranking models. Additionally, WB-Score reaches 0.95, surpassing both ArenaHard's 0.91 and AlpacaEval2.0's 0.89 for length-controlled win rates, as well as the 0.87 for regular win rates.
On the Role of Summary Content Units in Text Summarization Evaluation
Nawrath, Marcel, Nowak, Agnieszka, Ratz, Tristan, Walenta, Danilo C., Opitz, Juri, Ribeiro, Leonardo F. R., Sedoc, João, Deutsch, Daniel, Mille, Simon, Liu, Yixin, Zhang, Lining, Gehrmann, Sebastian, Mahamood, Saad, Clinciu, Miruna, Chandu, Khyathi, Hou, Yufang
At the heart of the Pyramid evaluation method for text summarization lie human written summary content units (SCUs). These SCUs are concise sentences that decompose a summary into small facts. Such SCUs can be used to judge the quality of a candidate summary, possibly partially automated via natural language inference (NLI) systems. Interestingly, with the aim to fully automate the Pyramid evaluation, Zhang and Bansal (2021) show that SCUs can be approximated by automatically generated semantic role triplets (STUs). However, several questions currently lack answers, in particular: i) Are there other ways of approximating SCUs that can offer advantages? ii) Under which conditions are SCUs (or their approximations) offering the most value? In this work, we examine two novel strategies to approximate SCUs: generating SCU approximations from AMR meaning representations (SMUs) and from large language models (SGUs), respectively. We find that while STUs and SMUs are competitive, the best approximation quality is achieved by SGUs. We also show through a simple sentence-decomposition baseline (SSUs) that SCUs (and their approximations) offer the most value when ranking short summaries, but may not help as much when ranking systems or longer summaries.
L3GO: Language Agents with Chain-of-3D-Thoughts for Generating Unconventional Objects
Yamada, Yutaro, Chandu, Khyathi, Lin, Yuchen, Hessel, Jack, Yildirim, Ilker, Choi, Yejin
Diffusion-based image generation models such as DALL-E 3 and Stable Diffusion-XL demonstrate remarkable capabilities in generating images with realistic and unique compositions. Yet, these models are not robust in precisely reasoning about physical and spatial configurations of objects, especially when instructed with unconventional, thereby out-of-distribution descriptions, such as "a chair with five legs". In this paper, we propose a language agent with chain-of-3D-thoughts (L3GO), an inference-time approach that can reason about part-based 3D mesh generation of unconventional objects that current data-driven diffusion models struggle with. More concretely, we use large language models as agents to compose a desired object via trial-and-error within the 3D simulation environment. To facilitate our investigation, we develop a new benchmark, Unconventionally Feasible Objects (UFO), as well as SimpleBlenv, a wrapper environment built on top of Blender where language agents can build and compose atomic building blocks via API calls. Human and automatic GPT-4V evaluations show that our approach surpasses the standard GPT-4 and other language agents (e.g., ReAct and Reflexion) for 3D mesh generation on ShapeNet. Moreover, when tested on our UFO benchmark, our approach outperforms other state-of-the-art text-to-2D image and text-to-3D models based on human evaluation.
Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research
Soldaini, Luca, Kinney, Rodney, Bhagia, Akshita, Schwenk, Dustin, Atkinson, David, Authur, Russell, Bogin, Ben, Chandu, Khyathi, Dumas, Jennifer, Elazar, Yanai, Hofmann, Valentin, Jha, Ananya Harsh, Kumar, Sachin, Lucy, Li, Lyu, Xinxi, Lambert, Nathan, Magnusson, Ian, Morrison, Jacob, Muennighoff, Niklas, Naik, Aakanksha, Nam, Crystal, Peters, Matthew E., Ravichander, Abhilasha, Richardson, Kyle, Shen, Zejiang, Strubell, Emma, Subramani, Nishant, Tafjord, Oyvind, Walsh, Pete, Zettlemoyer, Luke, Smith, Noah A., Hajishirzi, Hannaneh, Beltagy, Iz, Groeneveld, Dirk, Dodge, Jesse, Lo, Kyle
Language models have become a critical technology to tackling a wide range of natural language processing tasks, yet many details about how the best-performing language models were developed are not reported. In particular, information about their pretraining corpora is seldom discussed: commercial language models rarely provide any information about their data; even open models rarely release datasets they are trained on, or an exact recipe to reproduce them. As a result, it is challenging to conduct certain threads of language modeling research, such as understanding how training data impacts model capabilities and shapes their limitations. To facilitate open research on language model pretraining, we release Dolma, a three trillion tokens English corpus, built from a diverse mixture of web content, scientific papers, code, public-domain books, social media, and encyclopedic materials. In addition, we open source our data curation toolkit to enable further experimentation and reproduction of our work. In this report, we document Dolma, including its design principles, details about its construction, and a summary of its contents. We interleave this report with analyses and experimental results from training language models on intermediate states of Dolma to share what we have learned about important data curation practices, including the role of content or quality filters, deduplication, and multi-source mixing. Dolma has been used to train OLMo, a state-of-the-art, open language model and framework designed to build and study the science of language modeling.
NovaCOMET: Open Commonsense Foundation Models with Symbolic Knowledge Distillation
West, Peter, Bras, Ronan Le, Sorensen, Taylor, Lin, Bill Yuchen, Jiang, Liwei, Lu, Ximing, Chandu, Khyathi, Hessel, Jack, Baheti, Ashutosh, Bhagavatula, Chandra, Choi, Yejin
We present NovaCOMET, an open commonsense knowledge model, that combines the best aspects of knowledge and general task models. Compared to previous knowledge models, NovaCOMET allows open-format relations enabling direct application to reasoning tasks; compared to general task models like Flan-T5, it explicitly centers knowledge, enabling superior performance for commonsense reasoning. NovaCOMET leverages the knowledge of opaque proprietary models to create an open knowledge pipeline. First, knowledge is symbolically distilled into NovATOMIC, a publicly-released discrete knowledge graph which can be audited, critiqued, and filtered. Next, we train NovaCOMET on NovATOMIC by fine-tuning an open-source pretrained model. NovaCOMET uses an open-format training objective, replacing the fixed relation sets of past knowledge models, enabling arbitrary structures within the data to serve as inputs or outputs. The resulting generation model, optionally augmented with human annotation, matches or exceeds comparable open task models like Flan-T5 on a range of commonsense generation tasks. NovaCOMET serves as a counterexample to the contemporary focus on instruction tuning only, demonstrating a distinct advantage to explicitly modeling commonsense knowledge as well.
Inference-Time Policy Adapters (IPA): Tailoring Extreme-Scale LMs without Fine-tuning
Lu, Ximing, Brahman, Faeze, West, Peter, Jang, Jaehun, Chandu, Khyathi, Ravichander, Abhilasha, Qin, Lianhui, Ammanabrolu, Prithviraj, Jiang, Liwei, Ramnath, Sahana, Dziri, Nouha, Fisher, Jillian, Lin, Bill Yuchen, Hallinan, Skyler, Ren, Xiang, Welleck, Sean, Choi, Yejin
While extreme-scale language models have demonstrated exceptional performance on a variety of language tasks, the degree of control over these language models through pure prompting can often be limited. Directly fine-tuning such language models can be effective for tailoring them, but it can be either extremely costly (e.g., GPT-3) or not even feasible for the broader community (e.g., GPT-4). We propose Inference-time Policy Adapters (IPA), which efficiently tailors a language model such as GPT-3 without fine-tuning it. IPA guides a large base model during decoding time through a lightweight policy adapter trained to optimize an arbitrary user objective with reinforcement learning. On five challenging text generation tasks, such as toxicity reduction and lexically constrained generation, IPA consistently brings significant improvements over off-the-shelf language models. It outperforms competitive baseline methods, sometimes even including expensive fine-tuning. In particular, tailoring GPT-2 with IPA can outperform GPT-3, while tailoring GPT-3 with IPA brings a major performance boost over GPT-3 (and sometimes even over GPT-4). Our promising results highlight the potential of IPA as a lightweight alternative to tailoring extreme-scale language models.